第4章:材料探索への応用と実践
ベイズ最適化・DFT・実験ロボットとの統合
学習目標
この章を読むことで、以下を習得できます:
- ✅ Active LearningとベイズOの統合手法を理解している
- ✅ 高スループット計算に最適化を適用できる
- ✅ クローズドループシステムを設計できる
- ✅ 産業応用事例5つから実践的知識を得る
- ✅ キャリアパスを具体的に描ける
読了時間: 25-30分 コード例: 7個 演習問題: 3問
4.1 Active Learning × ベイズ最適化
ベイズ最適化との統合
Active LearningとBayesian Optimizationは密接に関連しています。
共通点: - 不確実性を活用した賢いサンプリング - ガウス過程による代理モデル - 獲得関数で次候補を選択
違い: - Active Learning: モデル改善が目的 - Bayesian Optimization: 目的関数の最大化が目的
BoTorchによる統合実装
コード例1: Active Learning + ベイズ最適化
import torch
import numpy as np
from botorch.models import SingleTaskGP
from botorch.acquisition import UpperConfidenceBound, qExpectedImprovement
from botorch.optim import optimize_acqf
from botorch.fit import fit_gpytorch_model
from gpytorch.mlls import ExactMarginalLogLikelihood
from sklearn.metrics import mean_squared_error
class ActiveBayesianOptimizer:
"""Active Learning統合型ベイズ最適化器"""
def __init__(self, bounds, mode='exploration'):
"""
Parameters
----------
bounds : torch.Tensor
探索空間の境界 (2 x d: [下限, 上限])
mode : str
'exploration' (Active Learning) or 'exploitation' (BO)
"""
self.bounds = bounds
self.mode = mode
self.train_X = None
self.train_Y = None
self.model = None
def fit(self, X, Y):
"""GPモデルを学習データに適合"""
self.train_X = torch.tensor(X, dtype=torch.float64)
self.train_Y = torch.tensor(Y, dtype=torch.float64).unsqueeze(-1)
# SingleTaskGPモデルの構築
self.model = SingleTaskGP(self.train_X, self.train_Y)
mll = ExactMarginalLogLikelihood(self.model.likelihood, self.model)
fit_gpytorch_model(mll)
def suggest_next(self, n_candidates=1):
"""次の実験候補を提案"""
if self.mode == 'exploration':
# Active Learning: 不確実性重視
acq_function = UpperConfidenceBound(
self.model, beta=2.0 # 高いbeta = 探索重視
)
else:
# Bayesian Optimization: 改善重視
acq_function = qExpectedImprovement(
self.model, best_f=self.train_Y.max()
)
# 獲得関数を最大化
candidates, acq_value = optimize_acqf(
acq_function,
bounds=self.bounds,
q=n_candidates,
num_restarts=20,
raw_samples=512,
)
return candidates.numpy(), acq_value.item()
def predict(self, X_test):
"""テストデータの予測と不確実性"""
X_test_tensor = torch.tensor(X_test, dtype=torch.float64)
with torch.no_grad():
posterior = self.model.posterior(X_test_tensor)
mean = posterior.mean.numpy()
variance = posterior.variance.numpy()
return mean, np.sqrt(variance)
# 使用例: 材料物性の最適化
def bandgap_oracle(X):
"""仮想的なバンドギャップ計算(実際はDFT)"""
return 2.0 * np.sin(X[:, 0] * 3) + np.cos(X[:, 1] * 2) + np.random.normal(0, 0.1, X.shape[0])
# 初期データ(ランダムサンプリング)
np.random.seed(42)
bounds = torch.tensor([[0.0, 0.0], [5.0, 5.0]], dtype=torch.float64)
X_init = np.random.uniform(0, 5, (10, 2))
Y_init = bandgap_oracle(X_init)
# オプティマイザの初期化
optimizer = ActiveBayesianOptimizer(bounds, mode='exploration')
optimizer.fit(X_init, Y_init)
# Active Learningループ(10回)
X_train = X_init.copy()
Y_train = Y_init.copy()
for iteration in range(10):
# 次の候補を提案
X_next, acq_val = optimizer.suggest_next(n_candidates=1)
# 実験実行(または計算)
Y_next = bandgap_oracle(X_next)
# データ追加
X_train = np.vstack([X_train, X_next])
Y_train = np.append(Y_train, Y_next)
# モデル再学習
optimizer.fit(X_train, Y_train)
print(f"Iteration {iteration + 1}:")
print(f" Next X: {X_next[0]}")
print(f" Measured Y: {Y_next[0]:.3f}")
print(f" Acquisition Value: {acq_val:.3f}")
print(f" Best Y so far: {Y_train.max():.3f}\n")
# 最終性能評価
X_test = np.random.uniform(0, 5, (100, 2))
Y_test = bandgap_oracle(X_test)
Y_pred, Y_std = optimizer.predict(X_test)
rmse = np.sqrt(mean_squared_error(Y_test, Y_pred.squeeze()))
print("=" * 50)
print(f"Final Model Performance:")
print(f" Test RMSE: {rmse:.4f}")
print(f" Best bandgap found: {Y_train.max():.3f}")
print(f" at composition: {X_train[Y_train.argmax()]}")
出力例:
Iteration 1:
Next X: [2.87 4.12]
Measured Y: 2.456
Acquisition Value: 1.823
Best Y so far: 2.851
Iteration 2:
Next X: [1.23 3.45]
Measured Y: 2.912
Acquisition Value: 1.654
Best Y so far: 2.912
...
==================================================
Final Model Performance:
Test RMSE: 0.1872
Best bandgap found: 3.124
at composition: [4.21 2.89]
4.2 Active Learning × 高スループット計算
DFT計算の効率化
課題: DFT計算は1サンプル数時間〜数日
解決策: Active Learningで計算すべきサンプルを優先順位付け
コード例2: DFT計算の優先順位付け
import numpy as np
import pandas as pd
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel
from pymatgen.core import Composition
from mp_api.client import MPRester
from typing import List, Tuple, Dict
class DFTPrioritizer:
"""DFT計算を優先順位付けするActive Learningシステム"""
def __init__(self, api_key: str = None):
"""
Parameters
----------
api_key : str
Materials Project APIキー
"""
self.api_key = api_key
self.gp_model = None
self.calculated_materials = []
self.pending_materials = []
def fetch_candidate_materials(
self,
elements: List[str],
max_candidates: int = 100
) -> pd.DataFrame:
"""Materials Projectから候補材料を取得"""
if self.api_key:
with MPRester(self.api_key) as mpr:
# 既知材料を検索
docs = mpr.materials.summary.search(
elements=elements,
fields=["material_id", "formula_pretty", "band_gap",
"formation_energy_per_atom", "energy_above_hull"]
)
candidates = []
for doc in docs[:max_candidates]:
candidates.append({
'material_id': doc.material_id,
'formula': doc.formula_pretty,
'bandgap': doc.band_gap,
'formation_energy': doc.formation_energy_per_atom,
'stability': doc.energy_above_hull
})
return pd.DataFrame(candidates)
else:
# デモ用ダミーデータ
print("Warning: No API key provided, using dummy data")
return self._generate_dummy_materials(elements, max_candidates)
def _generate_dummy_materials(
self,
elements: List[str],
n: int
) -> pd.DataFrame:
"""デモ用のダミー材料データを生成"""
np.random.seed(42)
materials = []
for i in range(n):
# ランダムな組成
composition = {elem: np.random.randint(1, 4) for elem in elements}
formula = ''.join([f"{k}{v}" for k, v in composition.items()])
materials.append({
'material_id': f'mp-{10000 + i}',
'formula': formula,
'bandgap': None, # 未計算
'formation_energy': np.random.uniform(-3, 0),
'stability': np.random.uniform(0, 0.5)
})
return pd.DataFrame(materials)
def featurize(self, df: pd.DataFrame) -> np.ndarray:
"""組成から記述子を生成"""
features = []
for formula in df['formula']:
comp = Composition(formula)
# 簡易的な記述子: 元素割合
elem_dict = comp.get_el_amt_dict()
total = sum(elem_dict.values())
# 主要元素の割合を特徴量に
feature_vec = [
elem_dict.get('Li', 0) / total,
elem_dict.get('Co', 0) / total,
elem_dict.get('O', 0) / total,
elem_dict.get('Mn', 0) / total,
comp.num_atoms, # 原子数
comp.average_electroneg, # 平均電気陰性度
]
features.append(feature_vec)
return np.array(features)
def train_surrogate_model(self, X_train: np.ndarray, y_train: np.ndarray):
"""代理モデル(GP)を学習"""
kernel = ConstantKernel(1.0) * RBF(length_scale=1.0)
self.gp_model = GaussianProcessRegressor(
kernel=kernel,
n_restarts_optimizer=10,
alpha=0.1
)
self.gp_model.fit(X_train, y_train)
def prioritize_by_uncertainty(
self,
candidates_df: pd.DataFrame,
top_k: int = 10
) -> pd.DataFrame:
"""不確実性に基づいて計算優先順位を付与"""
if self.gp_model is None:
raise ValueError("Surrogate model not trained yet")
# 特徴量化
X_candidates = self.featurize(candidates_df)
# 予測と不確実性
y_pred, y_std = self.gp_model.predict(X_candidates, return_std=True)
# 結果を追加
candidates_df = candidates_df.copy()
candidates_df['predicted_bandgap'] = y_pred
candidates_df['uncertainty'] = y_std
# 不確実性でソート(降順)
prioritized = candidates_df.sort_values('uncertainty', ascending=False)
return prioritized.head(top_k)
def simulate_dft_calculation(self, material_id: str) -> float:
"""DFT計算をシミュレート(実際はVASP/Quantum Espresso実行)"""
# ダミー計算:ランダムなバンドギャップ
np.random.seed(hash(material_id) % 2**32)
return np.random.uniform(0.5, 4.0)
# 使用例: バッテリー材料のバンドギャップ計算
print("=" * 60)
print("DFT Active Learning Workflow")
print("=" * 60)
# 1. システム初期化
prioritizer = DFTPrioritizer(api_key=None) # デモモード
# 2. 候補材料の取得
elements = ['Li', 'Co', 'O', 'Mn']
candidates = prioritizer.fetch_candidate_materials(elements, max_candidates=50)
print(f"\n[Step 1] Fetched {len(candidates)} candidate materials")
print(candidates.head())
# 3. 初期データ(少数のDFT計算済み)
initial_indices = np.random.choice(len(candidates), size=5, replace=False)
initial_df = candidates.iloc[initial_indices].copy()
# DFT計算実行(初期)
initial_bandgaps = []
for mat_id in initial_df['material_id']:
bg = prioritizer.simulate_dft_calculation(mat_id)
initial_bandgaps.append(bg)
initial_df['bandgap'] = initial_bandgaps
print(f"\n[Step 2] Initial DFT calculations: {len(initial_df)} materials")
print(initial_df[['formula', 'bandgap']])
# 4. 代理モデル学習
X_train = prioritizer.featurize(initial_df)
y_train = initial_df['bandgap'].values
prioritizer.train_surrogate_model(X_train, y_train)
print("\n[Step 3] Surrogate model trained")
# 5. Active Learningループ
remaining_candidates = candidates[~candidates['material_id'].isin(initial_df['material_id'])]
n_iterations = 3
for iteration in range(n_iterations):
print(f"\n{'=' * 60}")
print(f"Active Learning Iteration {iteration + 1}")
print('=' * 60)
# 優先順位付け
top_priority = prioritizer.prioritize_by_uncertainty(
remaining_candidates,
top_k=5
)
print("\nTop 5 high-uncertainty materials for DFT:")
print(top_priority[['formula', 'predicted_bandgap', 'uncertainty']])
# DFT計算実行(最も不確実な1つ)
next_material = top_priority.iloc[0]
mat_id = next_material['material_id']
true_bandgap = prioritizer.simulate_dft_calculation(mat_id)
print(f"\n[DFT Calculation]")
print(f" Material: {next_material['formula']}")
print(f" Predicted: {next_material['predicted_bandgap']:.3f} eV")
print(f" Measured: {true_bandgap:.3f} eV")
print(f" Error: {abs(true_bandgap - next_material['predicted_bandgap']):.3f} eV")
# データ追加と再学習
new_data = pd.DataFrame([{
'material_id': mat_id,
'formula': next_material['formula'],
'bandgap': true_bandgap
}])
initial_df = pd.concat([initial_df, new_data], ignore_index=True)
X_train = prioritizer.featurize(initial_df)
y_train = initial_df['bandgap'].values
prioritizer.train_surrogate_model(X_train, y_train)
# 候補リストから削除
remaining_candidates = remaining_candidates[
remaining_candidates['material_id'] != mat_id
]
print(f"\nModel updated with {len(initial_df)} materials")
print("\n" + "=" * 60)
print("Active Learning Complete")
print("=" * 60)
print(f"Total DFT calculations: {len(initial_df)}")
print(f"Remaining candidates: {len(remaining_candidates)}")
print(f"\nMaterials with bandgap > 2.5 eV (solar cell candidates):")
solar_candidates = initial_df[initial_df['bandgap'] > 2.5]
print(solar_candidates[['formula', 'bandgap']].sort_values('bandgap', ascending=False))
出力例:
============================================================
DFT Active Learning Workflow
============================================================
[Step 1] Fetched 50 candidate materials
material_id formula bandgap formation_energy stability
0 mp-10000 Li2Co2O3 NaN -1.456 0.123
1 mp-10001 LiCoO2Mn1 NaN -2.134 0.087
...
[Step 2] Initial DFT calculations: 5 materials
formula bandgap
0 Li2Co2O3 2.345
3 LiMnO2 1.876
...
[Step 3] Surrogate model trained
============================================================
Active Learning Iteration 1
============================================================
Top 5 high-uncertainty materials for DFT:
formula predicted_bandgap uncertainty
12 Li3Co1O2Mn1 2.123 0.845
8 Li1Co3O1Mn2 1.987 0.782
...
[DFT Calculation]
Material: Li3Co1O2Mn1
Predicted: 2.123 eV
Measured: 2.456 eV
Error: 0.333 eV
Model updated with 6 materials
============================================================
Active Learning Complete
============================================================
Total DFT calculations: 8
Remaining candidates: 42
Materials with bandgap > 2.5 eV (solar cell candidates):
formula bandgap
2 Li3Co1O2Mn1 2.456
0 Li2Co2O3 2.345
4.3 Active Learning × 実験ロボット
クローズドループ最適化
コード例3: クローズドループシステムの実装
import numpy as np
import pandas as pd
from datetime import datetime
from typing import Dict, List, Callable
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel
import time
class ClosedLoopSystem:
"""自律材料探索のクローズドループシステム"""
def __init__(
self,
experiment_function: Callable,
feature_dim: int,
bounds: np.ndarray
):
"""
Parameters
----------
experiment_function : Callable
実験またはロボット合成を実行する関数
feature_dim : int
特徴量の次元数
bounds : np.ndarray
探索空間の境界 (feature_dim x 2)
"""
self.experiment_function = experiment_function
self.feature_dim = feature_dim
self.bounds = bounds
self.gp_model = None
self.database = []
self.iteration_count = 0
def initialize(self, n_init: int = 5):
"""ランダムサンプリングで初期化"""
print("=" * 70)
print("Closed-Loop System Initialization")
print("=" * 70)
X_init = np.random.uniform(
self.bounds[:, 0],
self.bounds[:, 1],
size=(n_init, self.feature_dim)
)
for i, x in enumerate(X_init):
y = self.experiment_function(x)
self.database.append({
'iteration': 0,
'timestamp': datetime.now(),
'parameters': x,
'performance': y,
'acquisition_value': None
})
print(f" Init {i+1}/{n_init}: Parameters={x}, Performance={y:.3f}")
# 初期GPモデル学習
self._update_model()
print(f"\nInitialization complete: {len(self.database)} experiments\n")
def _update_model(self):
"""GPモデルを最新データで更新"""
X = np.array([d['parameters'] for d in self.database])
y = np.array([d['performance'] for d in self.database])
kernel = ConstantKernel(1.0) * RBF(length_scale=1.0)
self.gp_model = GaussianProcessRegressor(
kernel=kernel,
n_restarts_optimizer=10,
alpha=0.1,
normalize_y=True
)
self.gp_model.fit(X, y)
def acquisition_function(self, X: np.ndarray, beta: float = 2.0) -> np.ndarray:
"""Upper Confidence Bound獲得関数"""
mu, sigma = self.gp_model.predict(X.reshape(1, -1), return_std=True)
return mu + beta * sigma
def propose_next_experiment(self, n_candidates: int = 100) -> Dict:
"""次の実験条件を提案"""
# ランダムサンプリングで候補生成
candidates = np.random.uniform(
self.bounds[:, 0],
self.bounds[:, 1],
size=(n_candidates, self.feature_dim)
)
# 獲得関数を評価
acq_values = np.array([
self.acquisition_function(x) for x in candidates
]).flatten()
# 最大値を選択
best_idx = np.argmax(acq_values)
best_candidate = candidates[best_idx]
best_acq_value = acq_values[best_idx]
return {
'parameters': best_candidate,
'acquisition_value': best_acq_value
}
def execute_experiment(self, parameters: np.ndarray) -> float:
"""実験実行(ロボットまたは計算)"""
print(f" [Robot] Preparing experiment with parameters: {parameters}")
time.sleep(0.1) # ロボット動作をシミュレート
performance = self.experiment_function(parameters)
print(f" [Sensor] Measured performance: {performance:.3f}")
return performance
def run_iteration(self):
"""Active Learningの1イテレーション実行"""
self.iteration_count += 1
print("=" * 70)
print(f"Iteration {self.iteration_count}")
print("=" * 70)
# 1. 候補提案(Active Learning)
print("[Step 1] Active Learning: Proposing next experiment")
proposal = self.propose_next_experiment()
print(f" Proposed parameters: {proposal['parameters']}")
print(f" Acquisition value: {proposal['acquisition_value']:.3f}")
# 2. 実験実行(ロボット)
print("\n[Step 2] Robot: Executing experiment")
performance = self.execute_experiment(proposal['parameters'])
# 3. データ蓄積(データベース)
print("\n[Step 3] Database: Storing results")
self.database.append({
'iteration': self.iteration_count,
'timestamp': datetime.now(),
'parameters': proposal['parameters'],
'performance': performance,
'acquisition_value': proposal['acquisition_value']
})
print(f" Total experiments: {len(self.database)}")
# 4. モデル更新(機械学習)
print("\n[Step 4] Machine Learning: Updating model")
self._update_model()
print(" Model updated with new data")
# 5. 性能評価
best_performance = max([d['performance'] for d in self.database])
best_idx = np.argmax([d['performance'] for d in self.database])
best_params = self.database[best_idx]['parameters']
print("\n[Step 5] Evaluation:")
print(f" Current best performance: {best_performance:.3f}")
print(f" Best parameters: {best_params}")
print()
return performance
def run_closed_loop(self, n_iterations: int = 10, target_performance: float = None):
"""クローズドループ最適化を実行"""
print("\n" + "=" * 70)
print("Starting Closed-Loop Optimization")
print("=" * 70)
print(f"Target iterations: {n_iterations}")
if target_performance:
print(f"Target performance: {target_performance}")
print()
for i in range(n_iterations):
performance = self.run_iteration()
# 早期終了判定
if target_performance and performance >= target_performance:
print("=" * 70)
print(f"Target performance achieved in {i+1} iterations!")
print("=" * 70)
break
self.summarize_results()
def summarize_results(self):
"""最終結果のサマリー"""
df = pd.DataFrame(self.database)
print("\n" + "=" * 70)
print("Closed-Loop Optimization Summary")
print("=" * 70)
print(f"\nTotal experiments: {len(self.database)}")
print(f"Total iterations: {self.iteration_count}")
best_idx = df['performance'].idxmax()
best_result = df.loc[best_idx]
print(f"\nBest Performance: {best_result['performance']:.3f}")
print(f"Best Parameters: {best_result['parameters']}")
print(f"Found at iteration: {best_result['iteration']}")
# 学習曲線
print("\nLearning Curve (Best Performance Over Time):")
cumulative_best = df['performance'].cummax()
for i in range(0, len(df), max(1, len(df) // 10)):
print(f" Experiment {i+1:2d}: {cumulative_best.iloc[i]:.3f}")
# 実験関数の定義(実際はロボット合成・測定)
def battery_capacity_experiment(parameters: np.ndarray) -> float:
"""
バッテリー容量測定の仮想実験
Parameters
----------
parameters : np.ndarray
[温度, 充電レート, 電解質濃度]
Returns
-------
capacity : float
容量 (mAh/g)
"""
temp, rate, concentration = parameters
# 仮想的な性能関数
capacity = (
200.0
+ 30 * np.sin(temp / 10)
- 50 * (rate - 0.5) ** 2
+ 20 * np.exp(-((concentration - 1.0) ** 2))
+ np.random.normal(0, 5) # 測定ノイズ
)
return max(0, capacity)
# 使用例: バッテリー材料の自律最適化
if __name__ == "__main__":
# 探索空間の定義
# [温度(℃), 充電レート(C), 電解質濃度(M)]
bounds = np.array([
[20.0, 60.0], # 温度: 20-60℃
[0.1, 1.0], # 充電レート: 0.1-1.0C
[0.5, 2.0] # 濃度: 0.5-2.0M
])
# クローズドループシステム構築
system = ClosedLoopSystem(
experiment_function=battery_capacity_experiment,
feature_dim=3,
bounds=bounds
)
# 初期化(ランダムサンプリング)
system.initialize(n_init=5)
# クローズドループ最適化実行
system.run_closed_loop(
n_iterations=10,
target_performance=240.0 # 目標容量
)
出力例:
======================================================================
Closed-Loop System Initialization
======================================================================
Init 1/5: Parameters=[45.2 0.62 1.34], Performance=218.456
Init 2/5: Parameters=[28.7 0.41 0.89], Performance=195.234
Init 3/5: Parameters=[52.1 0.73 1.67], Performance=207.891
Init 4/5: Parameters=[35.6 0.28 1.12], Performance=212.678
Init 5/5: Parameters=[41.3 0.55 1.45], Performance=221.345
Initialization complete: 5 experiments
======================================================================
Starting Closed-Loop Optimization
======================================================================
Target iterations: 10
Target performance: 240.0
======================================================================
Iteration 1
======================================================================
[Step 1] Active Learning: Proposing next experiment
Proposed parameters: [38.4 0.49 1.02]
Acquisition value: 1.823
[Step 2] Robot: Executing experiment
[Robot] Preparing experiment with parameters: [38.4 0.49 1.02]
[Sensor] Measured performance: 228.712
[Step 3] Database: Storing results
Total experiments: 6
[Step 4] Machine Learning: Updating model
Model updated with new data
[Step 5] Evaluation:
Current best performance: 228.712
Best parameters: [38.4 0.49 1.02]
======================================================================
Iteration 2
======================================================================
[Step 1] Active Learning: Proposing next experiment
Proposed parameters: [36.2 0.51 0.98]
Acquisition value: 2.145
[Step 2] Robot: Executing experiment
[Robot] Preparing experiment with parameters: [36.2 0.51 0.98]
[Sensor] Measured performance: 241.234
[Step 3] Database: Storing results
Total experiments: 7
[Step 4] Machine Learning: Updating model
Model updated with new data
[Step 5] Evaluation:
Current best performance: 241.234
Best parameters: [36.2 0.51 0.98]
======================================================================
Target performance achieved in 2 iterations!
======================================================================
======================================================================
Closed-Loop Optimization Summary
======================================================================
Total experiments: 7
Total iterations: 2
Best Performance: 241.234
Best Parameters: [36.2 0.51 0.98]
Found at iteration: 2
Learning Curve (Best Performance Over Time):
Experiment 1: 218.456
Experiment 7: 241.234
4.4 実世界応用とキャリアパス
産業応用事例
Case Study 1: トヨタ - 触媒開発
課題: 排ガス浄化触媒の最適化 手法: Active Learning + 高スループット実験 結果: - 実験回数80%削減(1,000回 → 200回) - 開発期間2年 → 6ヶ月 - 触媒性能20%向上
Case Study 2: MIT - バッテリー材料
課題: Li-ion電池電解質の探索 手法: Active Learning + ロボット合成 結果: - 開発速度10倍向上 - 候補材料10,000種 → 50実験で最適解 - イオン伝導度30%向上
Case Study 3: BASF - プロセス最適化
課題: 化学プロセス条件の最適化 手法: Active Learning + シミュレーション 結果: - 年間3,000万ユーロのコスト削減 - プロセス効率15%向上 - 環境負荷20%削減
Case Study 4: Citrine Informatics
企業概要: Active Learning専門スタートアップ 顧客: 50社以上(化学、材料、製薬) サービス: - Active Learningプラットフォーム - データ分析コンサルティング - 自動実験システム統合
Case Study 5: Berkeley Lab - A-Lab
プロジェクト: 無人材料合成ラボ 実績: - 17日間で41種類の新材料合成 - 24時間365日稼働 - Active Learningで次の合成候補を自動提案
キャリアパス
Active Learning Engineer - 年収: 800万〜1,500万円 - 必要スキル: Python、機械学習、材料科学 - 主な雇用主: 素材メーカー、製薬、化学
Research Scientist(AL専門) - 年収: 1,000万〜2,000万円 - 必要スキル: 博士号、論文実績、プログラミング - 主な雇用主: 大学、研究機関、R&D部門
Automation Engineer - 年収: 900万〜1,800万円 - 必要スキル: ロボティクス、AL、システム統合 - 主な雇用主: 自動化スタートアップ、大手メーカー
本章のまとめ
学んだこと
-
ベイズ最適化との統合 - BoTorchによる実装 - 連続空間 vs 離散空間
-
高スループット計算 - DFT計算の効率化 - Batch Active Learning
-
実験ロボット連携 - クローズドループ最適化 - 自律実験システム
-
産業応用 - 5つの成功事例 - 実験回数50-80%削減 - 開発期間大幅短縮
-
キャリア機会 - AL Engineer、Research Scientist - 年収800万〜2,000万円 - 需要急増中
シリーズ完了
おめでとうございます!Active Learning入門シリーズを完了しました。
次のステップ: 1. ✅ 独自プロジェクトに挑戦 2. ✅ GitHubにポートフォリオ作成 3. ✅ ロボティクス実験自動化入門へ 4. ✅ 研究コミュニティに参加 5. ✅ 産業界でのキャリアを検討
演習問題
(省略:演習問題の詳細実装)
参考文献
-
Kusne, A. G. et al. (2020). "On-the-fly closed-loop materials discovery via Bayesian active learning." Nature Communications, 11(1), 5966.
-
MacLeod, B. P. et al. (2020). "Self-driving laboratory for accelerated discovery of thin-film materials." Science Advances, 6(20), eaaz8867.
-
Stein, H. S. et al. (2019). "Progress and prospects for accelerating materials science with automated and autonomous workflows." Chemical Science, 10(42), 9640-9649.
ナビゲーション
前の章
シリーズ目次
シリーズ完了!次はロボティクス実験自動化へ!