Learning Objectives
- Understand major applications of superconductivity
- Learn how MRI machines utilize superconducting magnets
- Explore transportation applications (maglev trains)
- Discover the role of superconductors in particle physics
- Appreciate emerging applications in quantum computing
4.1 Medical Imaging: MRI
Magnetic Resonance Imaging (MRI) is perhaps the most successful commercial application of superconductivity. Every MRI machine contains a superconducting magnet.
Why Superconducting Magnets?
MRI requires strong, stable, uniform magnetic fields:
| Requirement | Value | Why Superconducting? |
|---|---|---|
| Field strength | 1.5 - 7 T | Normal electromagnets would need enormous power |
| Homogeneity | < 1 ppm | Zero resistance means no field variations from heating |
| Stability | Years of operation | Persistent current mode—no power supply fluctuations |
| Operating cost | Minimal | Only cooling costs, no Joule heating losses |
MRI Magnet Specifications
- Material: NbTi wire (most common)
- Cooling: Liquid helium (4.2 K)
- Current: ~400 A in persistent mode
- Stored energy: Several megajoules
- Field: 1.5 T (standard), 3 T (high resolution), 7+ T (research)
MRI Market Size
The global MRI market represents approximately 60% of all commercial superconductor applications by value. There are over 50,000 MRI scanners installed worldwide.
import numpy as np
import matplotlib.pyplot as plt
# MRI field strength vs applications
field_strengths = [0.5, 1.5, 3.0, 7.0, 11.7]
applications = ['Open MRI\n(claustrophobia)', 'Standard\nclinical',
'High resolution\nclinical', 'Research\nimaging',
'Ultra-high\nresearch']
market_share = [5, 60, 30, 4, 1] # Approximate percentages
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Bar chart: Field strength
ax1 = axes[0]
colors = plt.cm.Blues(np.linspace(0.3, 0.9, len(field_strengths)))
bars = ax1.bar(range(len(field_strengths)), field_strengths, color=colors)
ax1.set_xticks(range(len(applications)))
ax1.set_xticklabels(applications, fontsize=9)
ax1.set_ylabel('Magnetic Field (T)', fontsize=12)
ax1.set_title('MRI Scanner Field Strengths', fontsize=14)
ax1.set_ylim(0, 13)
# Add field values on bars
for bar, field in zip(bars, field_strengths):
ax1.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.3,
f'{field} T', ha='center', fontsize=10, fontweight='bold')
# Pie chart: Market share
ax2 = axes[1]
colors_pie = ['lightblue', 'steelblue', 'royalblue', 'navy', 'darkblue']
ax2.pie(market_share, labels=[f'{s}%' for s in market_share],
colors=colors_pie, startangle=90, autopct='')
ax2.set_title('MRI Market Share by Field Strength', fontsize=14)
# Create legend
legend_labels = [f'{f} T - {a.replace(chr(10), " ")}' for f, a in zip(field_strengths, applications)]
ax2.legend(legend_labels, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=9)
plt.tight_layout()
plt.show()
4.2 Transportation: Maglev Trains
Magnetic levitation (maglev) trains use superconducting magnets to float above the track, eliminating friction and enabling speeds over 600 km/h.
How Maglev Works
on train] --> B[Create strong
magnetic field] B --> C[Induce currents in
track coils] C --> D[Repulsive force
lifts train] D --> E[Propulsion via
linear motor] end
Operational Systems
| System | Country | Speed | Technology | Status |
|---|---|---|---|---|
| JR-Maglev (SCMaglev) | Japan | 603 km/h (record) | Superconducting | Under construction |
| Shanghai Maglev | China | 431 km/h | Electromagnetic | Operational |
| Incheon Maglev | South Korea | 110 km/h | Electromagnetic | Operational |
SCMaglev (Japan)
Japan's superconducting maglev system uses NbTi magnets cooled by liquid helium. The Chuo Shinkansen line (Tokyo-Osaka) is under construction and will operate at 505 km/h commercially.
- Levitation height: ~10 cm
- Power consumption: ~1/3 of conventional high-speed rail at same speed
- No wheel-rail friction or noise
import numpy as np
import matplotlib.pyplot as plt
# Speed comparison of transportation
transport = ['Car\n(highway)', 'High-speed\nrail', 'Maglev\n(Shanghai)',
'SCMaglev\n(test)', 'Commercial\naircraft']
speeds = [120, 320, 431, 603, 900] # km/h
colors = ['gray', 'blue', 'green', 'red', 'orange']
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Speed comparison
ax1 = axes[0]
bars = ax1.barh(transport, speeds, color=colors, alpha=0.7)
ax1.set_xlabel('Speed (km/h)', fontsize=12)
ax1.set_title('Transportation Speed Comparison', fontsize=14)
for bar, speed in zip(bars, speeds):
ax1.text(bar.get_width() + 10, bar.get_y() + bar.get_height()/2,
f'{speed} km/h', va='center', fontsize=10)
ax1.set_xlim(0, 1000)
# Energy efficiency (approximate relative values)
# Lower is better - energy per passenger-km
transport_eff = ['Car\n(1 person)', 'Car\n(4 people)', 'High-speed\nrail',
'Maglev', 'Aircraft']
energy = [100, 25, 15, 20, 60] # Relative values
ax2 = axes[1]
colors_eff = ['red', 'orange', 'green', 'blue', 'red']
bars = ax2.bar(transport_eff, energy, color=colors_eff, alpha=0.7)
ax2.set_ylabel('Energy (relative, per passenger-km)', fontsize=12)
ax2.set_title('Energy Efficiency Comparison', fontsize=14)
ax2.axhline(y=20, color='gray', linestyle='--', alpha=0.5)
plt.tight_layout()
plt.show()
4.3 Scientific Research: Particle Accelerators
The world's largest superconducting system is the Large Hadron Collider (LHC) at CERN, which discovered the Higgs boson in 2012.
LHC Superconducting System
- 1,232 dipole magnets: Each 15 m long, 8.3 T field
- Material: NbTi cables
- Operating temperature: 1.9 K (superfluid helium)
- Total length: 27 km circumference
- Stored energy: 11 GJ in magnets
Why 1.9 K Instead of 4.2 K?
At 1.9 K, helium becomes a "superfluid" with exceptional thermal conductivity. This allows better cooling of the magnets and enables higher magnetic fields (8.3 T vs. ~6 T at 4.2 K).
Other Accelerator Applications
- NMR spectrometers: High-field magnets for chemical analysis
- Fusion reactors (ITER): Nb₃Sn magnets for plasma confinement
- Synchrotron light sources: Undulator magnets
4.4 Sensors: SQUIDs
The Superconducting Quantum Interference Device (SQUID) is the most sensitive magnetic field detector known, capable of measuring fields as small as 10⁻¹⁵ T.
How SQUIDs Work
A SQUID consists of a superconducting loop with one or two Josephson junctions. The device exploits quantum interference effects:
through loop] --> B[Changes phase
of supercurrent] B --> C[Interference at
Josephson junctions] C --> D[Oscillating
voltage output] D --> E[Ultra-sensitive
flux measurement] end
SQUID Applications
| Application | Field Sensitivity | Use Case |
|---|---|---|
| Magnetoencephalography (MEG) | 10⁻¹⁴ T | Brain activity mapping |
| Magnetocardiography (MCG) | 10⁻¹² T | Heart function monitoring |
| Geophysical surveys | 10⁻¹¹ T | Mineral exploration |
| Non-destructive testing | 10⁻¹⁰ T | Crack detection in metals |
import numpy as np
import matplotlib.pyplot as plt
# SQUID sensitivity compared to other magnetometers
sensors = ['Hall sensor', 'Fluxgate', 'Optically pumped', 'SQUID']
sensitivity = [1e-6, 1e-10, 1e-12, 1e-15] # Tesla
fig, ax = plt.subplots(figsize=(10, 6))
colors = plt.cm.viridis(np.linspace(0.2, 0.8, len(sensors)))
bars = ax.barh(sensors, sensitivity, color=colors, log=True)
ax.set_xlabel('Field Sensitivity (T)', fontsize=12)
ax.set_title('Magnetic Field Sensor Comparison', fontsize=14)
ax.set_xscale('log')
ax.invert_xaxis()
# Add sensitivity labels
for bar, sens in zip(bars, sensitivity):
ax.text(sens * 0.3, bar.get_y() + bar.get_height()/2,
f'{sens:.0e} T', va='center', fontsize=10, fontweight='bold')
# Add reference lines
ax.axvline(x=1e-12, color='red', linestyle='--', alpha=0.5)
ax.text(1e-12, 3.5, 'Brain signals\n(~10⁻¹² T)', fontsize=9, color='red', ha='center')
ax.axvline(x=5e-5, color='green', linestyle='--', alpha=0.5)
ax.text(5e-5, 3.5, "Earth's field\n(~50 μT)", fontsize=9, color='green', ha='center')
plt.grid(True, alpha=0.3, axis='x')
plt.tight_layout()
plt.show()
4.5 Power Applications
Superconducting Cables
High-temperature superconducting (HTS) cables can carry 3-5 times more current than copper cables of the same size:
- No resistive losses: Zero Joule heating
- Compact: Higher power density
- Underground: No overhead lines needed
- Current projects: AmpaCity (Germany), SuperCity (Korea)
Fault Current Limiters
Superconducting fault current limiters (SFCLs) protect power grids by instantly transitioning from superconducting to resistive state during a fault:
How SFCLs Work
- Normal operation: Superconductor carries current with zero resistance
- Fault occurs: Current exceeds critical value
- Superconductor transitions to normal state (in milliseconds)
- Resistance limits fault current, protecting equipment
- System cools, superconductivity recovers automatically
4.6 Emerging Applications: Quantum Computing
Superconducting circuits are a leading platform for quantum computers, used by IBM, Google, and other major players.
Superconducting Qubits
A qubit (quantum bit) can exist in a superposition of 0 and 1 states. Superconducting qubits use Josephson junctions as non-linear elements:
| Qubit Type | Description | Companies |
|---|---|---|
| Transmon | Charge-insensitive design | IBM, Google |
| Flux qubit | Uses persistent current states | D-Wave |
| Phase qubit | Uses phase across junction | Research labs |
Why Superconducting Qubits?
- Scalability: Fabricated using standard semiconductor processes
- Fast gates: Nanosecond operation times
- High connectivity: Can couple many qubits
- Well-understood physics: Based on mature Josephson junction technology
Quantum Computing Milestones
- 2019: Google's 53-qubit Sycamore demonstrates "quantum supremacy"
- 2023: IBM's 1,121-qubit Condor processor
- Future: Fault-tolerant quantum computing with error correction
import numpy as np
import matplotlib.pyplot as plt
# Quantum computer qubit count growth (approximate)
years = [2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
ibm_qubits = [5, 16, 20, 53, 65, 127, 433, 1121, 1121]
google_qubits = [9, 22, 72, 53, 53, 53, 53, 70, 105]
fig, ax = plt.subplots(figsize=(10, 6))
ax.semilogy(years, ibm_qubits, 'bo-', markersize=8, linewidth=2, label='IBM')
ax.semilogy(years, google_qubits, 'rs-', markersize=8, linewidth=2, label='Google')
ax.set_xlabel('Year', fontsize=12)
ax.set_ylabel('Number of Qubits (log scale)', fontsize=12)
ax.set_title('Growth of Superconducting Quantum Computers', fontsize=14)
ax.legend(fontsize=11)
ax.grid(True, alpha=0.3, which='both')
# Add annotations
ax.annotate('Google quantum\nsupremacy', xy=(2019, 53), xytext=(2017.5, 200),
fontsize=10, arrowprops=dict(arrowstyle='->', color='red'))
ax.annotate('IBM Condor\n(1,121 qubits)', xy=(2023, 1121), xytext=(2021, 600),
fontsize=10, arrowprops=dict(arrowstyle='->', color='blue'))
plt.tight_layout()
plt.show()
4.7 Application Overview
Summary
Key Takeaways
- MRI: Largest commercial market; uses NbTi magnets at 1.5-7 T
- Maglev: SCMaglev achieves 600+ km/h using superconducting magnets
- Particle physics: LHC uses 27 km of superconducting magnets at 1.9 K
- SQUIDs: Most sensitive magnetic sensors (10⁻¹⁵ T)
- Power systems: HTS cables and fault current limiters entering market
- Quantum computing: Superconducting qubits lead the race to useful quantum computers
Practice Problems
Problem 1
An MRI magnet stores 5 MJ of energy. If this energy were released in 1 second due to a quench (sudden loss of superconductivity), what average power would be dissipated? Compare this to a typical household power consumption.
Problem 2
The SCMaglev train levitates at 10 cm above the track. If the superconducting magnets on a 300-ton train failed, how long would it take to fall to the track? (Use g = 10 m/s²)
Problem 3
A SQUID can detect magnetic fields of 10⁻¹⁵ T. Earth's magnetic field is about 5×10⁻⁵ T. By what factor is Earth's field stronger than the SQUID detection limit?