🌐 EN | 🇯🇵 JP

Chapter 4: Applications of Superconductivity

From Medical Imaging to Quantum Computing

⏱️ 20-30 min 💻 5 Code Examples 📊 Beginner

Learning Objectives

4.1 Medical Imaging: MRI

Magnetic Resonance Imaging (MRI) is perhaps the most successful commercial application of superconductivity. Every MRI machine contains a superconducting magnet.

Why Superconducting Magnets?

MRI requires strong, stable, uniform magnetic fields:

RequirementValueWhy Superconducting?
Field strength1.5 - 7 TNormal electromagnets would need enormous power
Homogeneity< 1 ppmZero resistance means no field variations from heating
StabilityYears of operationPersistent current mode—no power supply fluctuations
Operating costMinimalOnly cooling costs, no Joule heating losses

MRI Magnet Specifications

MRI Market Size

The global MRI market represents approximately 60% of all commercial superconductor applications by value. There are over 50,000 MRI scanners installed worldwide.

import numpy as np
import matplotlib.pyplot as plt

# MRI field strength vs applications
field_strengths = [0.5, 1.5, 3.0, 7.0, 11.7]
applications = ['Open MRI\n(claustrophobia)', 'Standard\nclinical',
                'High resolution\nclinical', 'Research\nimaging',
                'Ultra-high\nresearch']
market_share = [5, 60, 30, 4, 1]  # Approximate percentages

fig, axes = plt.subplots(1, 2, figsize=(14, 5))

# Bar chart: Field strength
ax1 = axes[0]
colors = plt.cm.Blues(np.linspace(0.3, 0.9, len(field_strengths)))
bars = ax1.bar(range(len(field_strengths)), field_strengths, color=colors)
ax1.set_xticks(range(len(applications)))
ax1.set_xticklabels(applications, fontsize=9)
ax1.set_ylabel('Magnetic Field (T)', fontsize=12)
ax1.set_title('MRI Scanner Field Strengths', fontsize=14)
ax1.set_ylim(0, 13)

# Add field values on bars
for bar, field in zip(bars, field_strengths):
    ax1.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.3,
            f'{field} T', ha='center', fontsize=10, fontweight='bold')

# Pie chart: Market share
ax2 = axes[1]
colors_pie = ['lightblue', 'steelblue', 'royalblue', 'navy', 'darkblue']
ax2.pie(market_share, labels=[f'{s}%' for s in market_share],
        colors=colors_pie, startangle=90, autopct='')
ax2.set_title('MRI Market Share by Field Strength', fontsize=14)

# Create legend
legend_labels = [f'{f} T - {a.replace(chr(10), " ")}' for f, a in zip(field_strengths, applications)]
ax2.legend(legend_labels, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=9)

plt.tight_layout()
plt.show()

4.2 Transportation: Maglev Trains

Magnetic levitation (maglev) trains use superconducting magnets to float above the track, eliminating friction and enabling speeds over 600 km/h.

How Maglev Works

graph TB subgraph "Maglev Principle" A[Superconducting magnets
on train] --> B[Create strong
magnetic field] B --> C[Induce currents in
track coils] C --> D[Repulsive force
lifts train] D --> E[Propulsion via
linear motor] end

Operational Systems

SystemCountrySpeedTechnologyStatus
JR-Maglev (SCMaglev)Japan603 km/h (record)SuperconductingUnder construction
Shanghai MaglevChina431 km/hElectromagneticOperational
Incheon MaglevSouth Korea110 km/hElectromagneticOperational

SCMaglev (Japan)

Japan's superconducting maglev system uses NbTi magnets cooled by liquid helium. The Chuo Shinkansen line (Tokyo-Osaka) is under construction and will operate at 505 km/h commercially.

import numpy as np
import matplotlib.pyplot as plt

# Speed comparison of transportation
transport = ['Car\n(highway)', 'High-speed\nrail', 'Maglev\n(Shanghai)',
             'SCMaglev\n(test)', 'Commercial\naircraft']
speeds = [120, 320, 431, 603, 900]  # km/h
colors = ['gray', 'blue', 'green', 'red', 'orange']

fig, axes = plt.subplots(1, 2, figsize=(14, 5))

# Speed comparison
ax1 = axes[0]
bars = ax1.barh(transport, speeds, color=colors, alpha=0.7)
ax1.set_xlabel('Speed (km/h)', fontsize=12)
ax1.set_title('Transportation Speed Comparison', fontsize=14)
for bar, speed in zip(bars, speeds):
    ax1.text(bar.get_width() + 10, bar.get_y() + bar.get_height()/2,
            f'{speed} km/h', va='center', fontsize=10)
ax1.set_xlim(0, 1000)

# Energy efficiency (approximate relative values)
# Lower is better - energy per passenger-km
transport_eff = ['Car\n(1 person)', 'Car\n(4 people)', 'High-speed\nrail',
                 'Maglev', 'Aircraft']
energy = [100, 25, 15, 20, 60]  # Relative values

ax2 = axes[1]
colors_eff = ['red', 'orange', 'green', 'blue', 'red']
bars = ax2.bar(transport_eff, energy, color=colors_eff, alpha=0.7)
ax2.set_ylabel('Energy (relative, per passenger-km)', fontsize=12)
ax2.set_title('Energy Efficiency Comparison', fontsize=14)
ax2.axhline(y=20, color='gray', linestyle='--', alpha=0.5)

plt.tight_layout()
plt.show()

4.3 Scientific Research: Particle Accelerators

The world's largest superconducting system is the Large Hadron Collider (LHC) at CERN, which discovered the Higgs boson in 2012.

LHC Superconducting System

Why 1.9 K Instead of 4.2 K?

At 1.9 K, helium becomes a "superfluid" with exceptional thermal conductivity. This allows better cooling of the magnets and enables higher magnetic fields (8.3 T vs. ~6 T at 4.2 K).

Other Accelerator Applications

4.4 Sensors: SQUIDs

The Superconducting Quantum Interference Device (SQUID) is the most sensitive magnetic field detector known, capable of measuring fields as small as 10⁻¹⁵ T.

How SQUIDs Work

A SQUID consists of a superconducting loop with one or two Josephson junctions. The device exploits quantum interference effects:

graph LR subgraph "SQUID Principle" A[Magnetic flux
through loop] --> B[Changes phase
of supercurrent] B --> C[Interference at
Josephson junctions] C --> D[Oscillating
voltage output] D --> E[Ultra-sensitive
flux measurement] end

SQUID Applications

ApplicationField SensitivityUse Case
Magnetoencephalography (MEG)10⁻¹⁴ TBrain activity mapping
Magnetocardiography (MCG)10⁻¹² THeart function monitoring
Geophysical surveys10⁻¹¹ TMineral exploration
Non-destructive testing10⁻¹⁰ TCrack detection in metals
import numpy as np
import matplotlib.pyplot as plt

# SQUID sensitivity compared to other magnetometers
sensors = ['Hall sensor', 'Fluxgate', 'Optically pumped', 'SQUID']
sensitivity = [1e-6, 1e-10, 1e-12, 1e-15]  # Tesla

fig, ax = plt.subplots(figsize=(10, 6))

colors = plt.cm.viridis(np.linspace(0.2, 0.8, len(sensors)))
bars = ax.barh(sensors, sensitivity, color=colors, log=True)

ax.set_xlabel('Field Sensitivity (T)', fontsize=12)
ax.set_title('Magnetic Field Sensor Comparison', fontsize=14)
ax.set_xscale('log')
ax.invert_xaxis()

# Add sensitivity labels
for bar, sens in zip(bars, sensitivity):
    ax.text(sens * 0.3, bar.get_y() + bar.get_height()/2,
            f'{sens:.0e} T', va='center', fontsize=10, fontweight='bold')

# Add reference lines
ax.axvline(x=1e-12, color='red', linestyle='--', alpha=0.5)
ax.text(1e-12, 3.5, 'Brain signals\n(~10⁻¹² T)', fontsize=9, color='red', ha='center')

ax.axvline(x=5e-5, color='green', linestyle='--', alpha=0.5)
ax.text(5e-5, 3.5, "Earth's field\n(~50 μT)", fontsize=9, color='green', ha='center')

plt.grid(True, alpha=0.3, axis='x')
plt.tight_layout()
plt.show()

4.5 Power Applications

Superconducting Cables

High-temperature superconducting (HTS) cables can carry 3-5 times more current than copper cables of the same size:

Fault Current Limiters

Superconducting fault current limiters (SFCLs) protect power grids by instantly transitioning from superconducting to resistive state during a fault:

How SFCLs Work

  1. Normal operation: Superconductor carries current with zero resistance
  2. Fault occurs: Current exceeds critical value
  3. Superconductor transitions to normal state (in milliseconds)
  4. Resistance limits fault current, protecting equipment
  5. System cools, superconductivity recovers automatically

4.6 Emerging Applications: Quantum Computing

Superconducting circuits are a leading platform for quantum computers, used by IBM, Google, and other major players.

Superconducting Qubits

A qubit (quantum bit) can exist in a superposition of 0 and 1 states. Superconducting qubits use Josephson junctions as non-linear elements:

Qubit TypeDescriptionCompanies
TransmonCharge-insensitive designIBM, Google
Flux qubitUses persistent current statesD-Wave
Phase qubitUses phase across junctionResearch labs

Why Superconducting Qubits?

Quantum Computing Milestones

import numpy as np
import matplotlib.pyplot as plt

# Quantum computer qubit count growth (approximate)
years = [2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
ibm_qubits = [5, 16, 20, 53, 65, 127, 433, 1121, 1121]
google_qubits = [9, 22, 72, 53, 53, 53, 53, 70, 105]

fig, ax = plt.subplots(figsize=(10, 6))

ax.semilogy(years, ibm_qubits, 'bo-', markersize=8, linewidth=2, label='IBM')
ax.semilogy(years, google_qubits, 'rs-', markersize=8, linewidth=2, label='Google')

ax.set_xlabel('Year', fontsize=12)
ax.set_ylabel('Number of Qubits (log scale)', fontsize=12)
ax.set_title('Growth of Superconducting Quantum Computers', fontsize=14)
ax.legend(fontsize=11)
ax.grid(True, alpha=0.3, which='both')

# Add annotations
ax.annotate('Google quantum\nsupremacy', xy=(2019, 53), xytext=(2017.5, 200),
           fontsize=10, arrowprops=dict(arrowstyle='->', color='red'))
ax.annotate('IBM Condor\n(1,121 qubits)', xy=(2023, 1121), xytext=(2021, 600),
           fontsize=10, arrowprops=dict(arrowstyle='->', color='blue'))

plt.tight_layout()
plt.show()

4.7 Application Overview

graph TB SC[Superconductivity] --> MED[Medical] SC --> TRANS[Transportation] SC --> SCI[Science] SC --> PWR[Power] SC --> QC[Quantum] MED --> MRI[MRI scanners] MED --> MEG[Brain imaging] TRANS --> MAG[Maglev trains] TRANS --> SHIP[Ship propulsion] SCI --> LHC[Particle accelerators] SCI --> NMR[NMR spectroscopy] SCI --> FUS[Fusion research] PWR --> CAB[Power cables] PWR --> FCL[Fault limiters] PWR --> SMES[Energy storage] QC --> QUBIT[Qubits] QC --> SENS[Quantum sensors]

Summary

Key Takeaways

Practice Problems

Problem 1

An MRI magnet stores 5 MJ of energy. If this energy were released in 1 second due to a quench (sudden loss of superconductivity), what average power would be dissipated? Compare this to a typical household power consumption.

Problem 2

The SCMaglev train levitates at 10 cm above the track. If the superconducting magnets on a 300-ton train failed, how long would it take to fall to the track? (Use g = 10 m/s²)

Problem 3

A SQUID can detect magnetic fields of 10⁻¹⁵ T. Earth's magnetic field is about 5×10⁻⁵ T. By what factor is Earth's field stronger than the SQUID detection limit?