Learning Objectives
- Survey the major classes of superconducting materials
- Understand the evolution from low-Tc to high-Tc superconductors
- Compare properties of different superconductor families
- Learn about material selection criteria for applications
- Visualize superconductor properties using Python
3.1 Elemental Superconductors
Many pure elements become superconducting at low temperatures. Of the 118 known elements, about 30 are superconductors under normal pressure, and more become superconducting under high pressure.
Periodic Table of Superconducting Elements
| Element | Symbol | Tc (K) | Type | Notes |
|---|---|---|---|---|
| Niobium | Nb | 9.3 | II | Highest Tc of elements |
| Technetium | Tc | 7.8 | II | Radioactive |
| Lead | Pb | 7.2 | I | Early discovery |
| Lanthanum | La | 6.0 | II | fcc phase |
| Vanadium | V | 5.4 | II | Transition metal |
| Mercury | Hg | 4.2 | I | First discovered (1911) |
| Tin | Sn | 3.7 | I | β-tin phase |
| Aluminum | Al | 1.2 | I | Large coherence length |
Interesting Observations
- The best conductors (Cu, Ag, Au) are NOT superconductors
- Magnetic elements (Fe, Co, Ni) are generally not superconducting
- Niobium has the highest Tc among elements at normal pressure
import numpy as np
import matplotlib.pyplot as plt
# Elemental superconductors data
elements = {
'Nb': {'Tc': 9.3, 'type': 'II', 'atomic_num': 41},
'Tc': {'Tc': 7.8, 'type': 'II', 'atomic_num': 43},
'Pb': {'Tc': 7.2, 'type': 'I', 'atomic_num': 82},
'La': {'Tc': 6.0, 'type': 'II', 'atomic_num': 57},
'V': {'Tc': 5.4, 'type': 'II', 'atomic_num': 23},
'Ta': {'Tc': 4.5, 'type': 'II', 'atomic_num': 73},
'Hg': {'Tc': 4.2, 'type': 'I', 'atomic_num': 80},
'Sn': {'Tc': 3.7, 'type': 'I', 'atomic_num': 50},
'In': {'Tc': 3.4, 'type': 'I', 'atomic_num': 49},
'Tl': {'Tc': 2.4, 'type': 'I', 'atomic_num': 81},
'Re': {'Tc': 1.7, 'type': 'II', 'atomic_num': 75},
'Al': {'Tc': 1.2, 'type': 'I', 'atomic_num': 13},
'Zn': {'Tc': 0.85, 'type': 'I', 'atomic_num': 30},
}
# Prepare data for plotting
names = list(elements.keys())
Tc_values = [elements[e]['Tc'] for e in names]
types = [elements[e]['type'] for e in names]
colors = ['blue' if t == 'I' else 'red' for t in types]
# Create bar chart
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.bar(names, Tc_values, color=colors, alpha=0.7, edgecolor='black')
# Add horizontal lines for reference
ax.axhline(y=4.2, color='green', linestyle='--', alpha=0.5, label='Liquid He (4.2 K)')
ax.set_xlabel('Element', fontsize=12)
ax.set_ylabel('Critical Temperature Tc (K)', fontsize=12)
ax.set_title('Critical Temperatures of Elemental Superconductors', fontsize=14)
# Create legend
from matplotlib.patches import Patch
legend_elements = [
Patch(facecolor='blue', alpha=0.7, label='Type I'),
Patch(facecolor='red', alpha=0.7, label='Type II'),
]
ax.legend(handles=legend_elements, fontsize=11)
plt.xticks(rotation=45)
plt.grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()
3.2 Alloy and Compound Superconductors
A15 Compounds
The A15 compounds (also called β-tungsten structure) have the formula A₃B and dominated superconductor technology before high-Tc materials:
| Compound | Tc (K) | Hc2 (T) | Applications |
|---|---|---|---|
| Nb₃Sn | 18.3 | 24 | High-field magnets, accelerators |
| Nb₃Ge | 23.2 | 38 | Research (difficult to fabricate) |
| Nb₃Al | 18.9 | 32 | High-field applications |
| V₃Si | 17.1 | 23 | Early research |
| V₃Ga | 16.8 | 21 | Specialty applications |
NbTi: The Workhorse Superconductor
Niobium-titanium alloy (NbTi) is the most widely used superconductor despite its modest Tc:
Why NbTi Dominates
- Ductile: Can be drawn into fine wires (unlike brittle A15s)
- Economical: Relatively inexpensive to manufacture
- Reliable: Well-understood processing and behavior
- Tc = 10 K: Adequate for liquid helium cooling
- Hc2 = 15 T: Sufficient for most magnet applications
MgB₂: A Surprising Discovery
In 2001, magnesium diboride (MgB₂) was discovered to be superconducting at 39 K—remarkably high for a simple binary compound:
- Conventional BCS superconductor (phonon-mediated)
- Two-gap superconductor (unique physics)
- Inexpensive raw materials
- Can operate with cryocoolers (no liquid helium needed)
3.3 High-Temperature Cuprate Superconductors
The 1986 Revolution
In 1986, Bednorz and Müller at IBM Zurich discovered superconductivity at 35 K in La-Ba-Cu-O, a copper oxide ceramic. This was shocking because:
- Ceramics were considered insulators, not superconductors
- The Tc was far higher than any known superconductor
- It didn't fit BCS theory predictions
They won the Nobel Prize in 1987—one of the fastest recognitions in physics history.
Breaking the Liquid Nitrogen Barrier
In 1987, Wu, Chu, and colleagues discovered YBCO (YBa₂Cu₃O₇) with Tc = 93 K. This was revolutionary because:
Why 77 K Matters
Liquid nitrogen boils at 77 K and costs about the same as milk. YBCO was the first superconductor that could operate above this temperature, making cooling vastly cheaper and simpler than liquid helium (4.2 K).
Cuprate Family
| Material | Formula | Tc (K) | Year |
|---|---|---|---|
| LBCO | La₂₋ₓBaₓCuO₄ | 35 | 1986 |
| YBCO | YBa₂Cu₃O₇ | 93 | 1987 |
| BSCCO-2212 | Bi₂Sr₂CaCu₂O₈ | 85 | 1988 |
| BSCCO-2223 | Bi₂Sr₂Ca₂Cu₃O₁₀ | 110 | 1988 |
| Tl-2223 | Tl₂Ba₂Ca₂Cu₃O₁₀ | 125 | 1988 |
| Hg-1223 | HgBa₂Ca₂Cu₃O₈ | 133 | 1993 |
Structure of Cuprates
All cuprate superconductors share a common structural feature: CuO₂ planes. Superconductivity occurs within these copper-oxygen layers.
BaO, SrO, etc.] --> B[CuO₂ Plane
Superconducting layer] B --> C[Spacer Layer
Y, Ca, etc.] C --> D[CuO₂ Plane
Superconducting layer] D --> E[Charge Reservoir Layer] end
import numpy as np
import matplotlib.pyplot as plt
# Timeline of Tc discoveries
discoveries = [
('Hg', 1911, 4.2, 'Element'),
('Pb', 1913, 7.2, 'Element'),
('Nb', 1930, 9.3, 'Element'),
('NbN', 1941, 16, 'Compound'),
('Nb₃Sn', 1954, 18.3, 'A15'),
('Nb₃Ge', 1973, 23.2, 'A15'),
('LBCO', 1986, 35, 'Cuprate'),
('YBCO', 1987, 93, 'Cuprate'),
('BSCCO', 1988, 110, 'Cuprate'),
('Tl-cuprate', 1988, 125, 'Cuprate'),
('Hg-cuprate', 1993, 133, 'Cuprate'),
('MgB₂', 2001, 39, 'Compound'),
('Fe-pnictide', 2008, 56, 'Iron-based'),
('H₃S (high P)', 2015, 203, 'Hydride'),
]
years = [d[1] for d in discoveries]
Tc = [d[2] for d in discoveries]
names = [d[0] for d in discoveries]
categories = [d[3] for d in discoveries]
# Color mapping
color_map = {
'Element': 'blue',
'Compound': 'green',
'A15': 'orange',
'Cuprate': 'red',
'Iron-based': 'purple',
'Hydride': 'magenta'
}
colors = [color_map[c] for c in categories]
fig, ax = plt.subplots(figsize=(14, 8))
# Plot points
for i, (year, tc, name, cat) in enumerate(zip(years, Tc, names, categories)):
ax.scatter(year, tc, c=color_map[cat], s=100, zorder=5)
offset = 5 if i % 2 == 0 else -15
ax.annotate(name, (year, tc), textcoords="offset points",
xytext=(5, offset), fontsize=9)
# Connect with lines
ax.plot(years, Tc, 'k-', alpha=0.3, linewidth=1)
# Add reference lines
ax.axhline(y=77, color='cyan', linestyle='--', alpha=0.7, linewidth=2,
label='Liquid N₂ (77 K)')
ax.axhline(y=4.2, color='blue', linestyle='--', alpha=0.5, linewidth=2,
label='Liquid He (4.2 K)')
# Highlight 1986 revolution
ax.axvspan(1986, 1995, alpha=0.1, color='red', label='High-Tc era')
ax.set_xlabel('Year', fontsize=12)
ax.set_ylabel('Critical Temperature Tc (K)', fontsize=12)
ax.set_title('Evolution of Superconductor Critical Temperatures', fontsize=14)
ax.set_xlim(1900, 2025)
ax.set_ylim(0, 220)
# Create legend for categories
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=c, label=cat) for cat, c in color_map.items()]
ax.legend(handles=legend_elements, loc='upper left', fontsize=10)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
3.4 Iron-Based Superconductors
In 2008, Hosono and colleagues in Japan discovered superconductivity in iron-arsenide compounds. This was surprising because iron is magnetic and usually suppresses superconductivity.
Iron Pnictides and Chalcogenides
- LaFeAsO₁₋ₓFₓ: Tc = 26 K (first discovery)
- SmFeAsO₁₋ₓFₓ: Tc = 55 K
- FeSe: Tc = 8 K (bulk), up to 65 K (thin film on SrTiO₃)
Why Iron-Based Superconductors Matter
- Second family of high-Tc superconductors after cuprates
- Different mechanism than cuprates (multi-band, s± pairing)
- Higher upper critical fields than cuprates
- Provide clues to understanding unconventional superconductivity
3.5 Comparing Superconductor Classes
import numpy as np
import matplotlib.pyplot as plt
# Comprehensive comparison data
materials = {
# Low-Tc
'NbTi': {'Tc': 10, 'Hc2': 15, 'Jc': 3000, 'class': 'Low-Tc', 'practical': True},
'Nb₃Sn': {'Tc': 18, 'Hc2': 24, 'Jc': 2000, 'class': 'Low-Tc', 'practical': True},
'MgB₂': {'Tc': 39, 'Hc2': 16, 'Jc': 1000, 'class': 'Low-Tc', 'practical': True},
# High-Tc
'YBCO': {'Tc': 93, 'Hc2': 100, 'Jc': 5000, 'class': 'High-Tc', 'practical': True},
'BSCCO': {'Tc': 110, 'Hc2': 60, 'Jc': 500, 'class': 'High-Tc', 'practical': True},
'Hg-1223': {'Tc': 133, 'Hc2': 100, 'Jc': 100, 'class': 'High-Tc', 'practical': False},
# Iron-based
'Fe-pnictide': {'Tc': 55, 'Hc2': 80, 'Jc': 500, 'class': 'Fe-based', 'practical': False},
}
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Color by class
class_colors = {'Low-Tc': 'blue', 'High-Tc': 'red', 'Fe-based': 'green'}
# Plot 1: Tc comparison
ax1 = axes[0]
names = list(materials.keys())
Tc_vals = [materials[m]['Tc'] for m in names]
colors = [class_colors[materials[m]['class']] for m in names]
bars = ax1.barh(names, Tc_vals, color=colors, alpha=0.7)
ax1.axvline(x=77, color='cyan', linestyle='--', label='LN₂ (77K)')
ax1.set_xlabel('Tc (K)', fontsize=12)
ax1.set_title('Critical Temperature', fontsize=14)
ax1.legend()
# Plot 2: Hc2 comparison
ax2 = axes[1]
Hc2_vals = [materials[m]['Hc2'] for m in names]
bars = ax2.barh(names, Hc2_vals, color=colors, alpha=0.7)
ax2.set_xlabel('Hc2 (T)', fontsize=12)
ax2.set_title('Upper Critical Field', fontsize=14)
# Plot 3: Practical status
ax3 = axes[2]
practical = ['Yes' if materials[m]['practical'] else 'No' for m in names]
practical_colors = ['green' if p == 'Yes' else 'gray' for p in practical]
ax3.barh(names, [1]*len(names), color=practical_colors, alpha=0.7)
ax3.set_xlabel('', fontsize=12)
ax3.set_title('Practical Applications', fontsize=14)
ax3.set_xlim(0, 1.5)
ax3.set_xticks([])
for i, (name, prac) in enumerate(zip(names, practical)):
ax3.text(0.5, i, prac, ha='center', va='center', fontsize=11, fontweight='bold')
# Add legend
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=c, label=cat, alpha=0.7)
for cat, c in class_colors.items()]
fig.legend(handles=legend_elements, loc='upper center', ncol=3,
bbox_to_anchor=(0.5, 1.02), fontsize=11)
plt.tight_layout()
plt.subplots_adjust(top=0.88)
plt.show()
3.6 Material Selection for Applications
| Application | Key Requirements | Typical Material | Reason |
|---|---|---|---|
| MRI magnets | Stable, low cost | NbTi | Reliable, economical |
| Particle accelerators | High field (>10T) | Nb₃Sn | Higher Hc2 than NbTi |
| Power cables | High current, LN₂ cooling | YBCO, BSCCO | Operate above 77K |
| Fault current limiters | Fast transition | YBCO | Sharp transition |
| SQUID sensors | Ultra-low noise | Nb, YBCO | Well-characterized |
| Quantum computing | Very low noise | Al, Nb | Clean interfaces |
Summary
Key Takeaways
- Elemental superconductors: ~30 elements, Nb has highest Tc (9.3 K)
- Alloys (NbTi): Workhorse material—ductile, reliable, economical
- A15 compounds (Nb₃Sn): Higher Tc and Hc2 but brittle
- MgB₂: Simple compound with Tc = 39 K, BCS mechanism
- Cuprates: Revolutionary high-Tc (up to 133 K), CuO₂ planes essential
- Iron-based: Second high-Tc family, different pairing mechanism
- Material choice depends on application requirements (Tc, Hc2, Jc, cost, processability)
Practice Problems
Problem 1
Why can't YBCO replace NbTi in all applications, despite having a much higher Tc? List at least three practical limitations of cuprate superconductors.
Problem 2
A new superconductor is discovered with Tc = 50 K. What cooling options are available? Would liquid nitrogen work? Calculate the safety margin.
Problem 3
Compare the discovery timeline of superconductors. Why did it take 75 years (1911-1986) to increase Tc from 4 K to 35 K, but only 7 years (1986-1993) to reach 133 K?