🌐 EN | 🇯🇵 JP

Chapter 3: Superconducting Materials

From Elemental Metals to High-Temperature Cuprates

⏱️ 20-30 min 💻 5 Code Examples 📊 Beginner

Learning Objectives

3.1 Elemental Superconductors

Many pure elements become superconducting at low temperatures. Of the 118 known elements, about 30 are superconductors under normal pressure, and more become superconducting under high pressure.

Periodic Table of Superconducting Elements

ElementSymbolTc (K)TypeNotes
NiobiumNb9.3IIHighest Tc of elements
TechnetiumTc7.8IIRadioactive
LeadPb7.2IEarly discovery
LanthanumLa6.0IIfcc phase
VanadiumV5.4IITransition metal
MercuryHg4.2IFirst discovered (1911)
TinSn3.7Iβ-tin phase
AluminumAl1.2ILarge coherence length

Interesting Observations

import numpy as np
import matplotlib.pyplot as plt

# Elemental superconductors data
elements = {
    'Nb': {'Tc': 9.3, 'type': 'II', 'atomic_num': 41},
    'Tc': {'Tc': 7.8, 'type': 'II', 'atomic_num': 43},
    'Pb': {'Tc': 7.2, 'type': 'I', 'atomic_num': 82},
    'La': {'Tc': 6.0, 'type': 'II', 'atomic_num': 57},
    'V': {'Tc': 5.4, 'type': 'II', 'atomic_num': 23},
    'Ta': {'Tc': 4.5, 'type': 'II', 'atomic_num': 73},
    'Hg': {'Tc': 4.2, 'type': 'I', 'atomic_num': 80},
    'Sn': {'Tc': 3.7, 'type': 'I', 'atomic_num': 50},
    'In': {'Tc': 3.4, 'type': 'I', 'atomic_num': 49},
    'Tl': {'Tc': 2.4, 'type': 'I', 'atomic_num': 81},
    'Re': {'Tc': 1.7, 'type': 'II', 'atomic_num': 75},
    'Al': {'Tc': 1.2, 'type': 'I', 'atomic_num': 13},
    'Zn': {'Tc': 0.85, 'type': 'I', 'atomic_num': 30},
}

# Prepare data for plotting
names = list(elements.keys())
Tc_values = [elements[e]['Tc'] for e in names]
types = [elements[e]['type'] for e in names]
colors = ['blue' if t == 'I' else 'red' for t in types]

# Create bar chart
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.bar(names, Tc_values, color=colors, alpha=0.7, edgecolor='black')

# Add horizontal lines for reference
ax.axhline(y=4.2, color='green', linestyle='--', alpha=0.5, label='Liquid He (4.2 K)')

ax.set_xlabel('Element', fontsize=12)
ax.set_ylabel('Critical Temperature Tc (K)', fontsize=12)
ax.set_title('Critical Temperatures of Elemental Superconductors', fontsize=14)

# Create legend
from matplotlib.patches import Patch
legend_elements = [
    Patch(facecolor='blue', alpha=0.7, label='Type I'),
    Patch(facecolor='red', alpha=0.7, label='Type II'),
]
ax.legend(handles=legend_elements, fontsize=11)

plt.xticks(rotation=45)
plt.grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()

3.2 Alloy and Compound Superconductors

A15 Compounds

The A15 compounds (also called β-tungsten structure) have the formula A₃B and dominated superconductor technology before high-Tc materials:

CompoundTc (K)Hc2 (T)Applications
Nb₃Sn18.324High-field magnets, accelerators
Nb₃Ge23.238Research (difficult to fabricate)
Nb₃Al18.932High-field applications
V₃Si17.123Early research
V₃Ga16.821Specialty applications

NbTi: The Workhorse Superconductor

Niobium-titanium alloy (NbTi) is the most widely used superconductor despite its modest Tc:

Why NbTi Dominates

MgB₂: A Surprising Discovery

In 2001, magnesium diboride (MgB₂) was discovered to be superconducting at 39 K—remarkably high for a simple binary compound:

3.3 High-Temperature Cuprate Superconductors

The 1986 Revolution

In 1986, Bednorz and Müller at IBM Zurich discovered superconductivity at 35 K in La-Ba-Cu-O, a copper oxide ceramic. This was shocking because:

They won the Nobel Prize in 1987—one of the fastest recognitions in physics history.

Breaking the Liquid Nitrogen Barrier

In 1987, Wu, Chu, and colleagues discovered YBCO (YBa₂Cu₃O₇) with Tc = 93 K. This was revolutionary because:

Why 77 K Matters

Liquid nitrogen boils at 77 K and costs about the same as milk. YBCO was the first superconductor that could operate above this temperature, making cooling vastly cheaper and simpler than liquid helium (4.2 K).

Cuprate Family

MaterialFormulaTc (K)Year
LBCOLa₂₋ₓBaₓCuO₄351986
YBCOYBa₂Cu₃O₇931987
BSCCO-2212Bi₂Sr₂CaCu₂O₈851988
BSCCO-2223Bi₂Sr₂Ca₂Cu₃O₁₀1101988
Tl-2223Tl₂Ba₂Ca₂Cu₃O₁₀1251988
Hg-1223HgBa₂Ca₂Cu₃O₈1331993

Structure of Cuprates

All cuprate superconductors share a common structural feature: CuO₂ planes. Superconductivity occurs within these copper-oxygen layers.

graph TB subgraph "Cuprate Structure" A[Charge Reservoir Layer
BaO, SrO, etc.] --> B[CuO₂ Plane
Superconducting layer] B --> C[Spacer Layer
Y, Ca, etc.] C --> D[CuO₂ Plane
Superconducting layer] D --> E[Charge Reservoir Layer] end
import numpy as np
import matplotlib.pyplot as plt

# Timeline of Tc discoveries
discoveries = [
    ('Hg', 1911, 4.2, 'Element'),
    ('Pb', 1913, 7.2, 'Element'),
    ('Nb', 1930, 9.3, 'Element'),
    ('NbN', 1941, 16, 'Compound'),
    ('Nb₃Sn', 1954, 18.3, 'A15'),
    ('Nb₃Ge', 1973, 23.2, 'A15'),
    ('LBCO', 1986, 35, 'Cuprate'),
    ('YBCO', 1987, 93, 'Cuprate'),
    ('BSCCO', 1988, 110, 'Cuprate'),
    ('Tl-cuprate', 1988, 125, 'Cuprate'),
    ('Hg-cuprate', 1993, 133, 'Cuprate'),
    ('MgB₂', 2001, 39, 'Compound'),
    ('Fe-pnictide', 2008, 56, 'Iron-based'),
    ('H₃S (high P)', 2015, 203, 'Hydride'),
]

years = [d[1] for d in discoveries]
Tc = [d[2] for d in discoveries]
names = [d[0] for d in discoveries]
categories = [d[3] for d in discoveries]

# Color mapping
color_map = {
    'Element': 'blue',
    'Compound': 'green',
    'A15': 'orange',
    'Cuprate': 'red',
    'Iron-based': 'purple',
    'Hydride': 'magenta'
}
colors = [color_map[c] for c in categories]

fig, ax = plt.subplots(figsize=(14, 8))

# Plot points
for i, (year, tc, name, cat) in enumerate(zip(years, Tc, names, categories)):
    ax.scatter(year, tc, c=color_map[cat], s=100, zorder=5)
    offset = 5 if i % 2 == 0 else -15
    ax.annotate(name, (year, tc), textcoords="offset points",
                xytext=(5, offset), fontsize=9)

# Connect with lines
ax.plot(years, Tc, 'k-', alpha=0.3, linewidth=1)

# Add reference lines
ax.axhline(y=77, color='cyan', linestyle='--', alpha=0.7, linewidth=2,
          label='Liquid N₂ (77 K)')
ax.axhline(y=4.2, color='blue', linestyle='--', alpha=0.5, linewidth=2,
          label='Liquid He (4.2 K)')

# Highlight 1986 revolution
ax.axvspan(1986, 1995, alpha=0.1, color='red', label='High-Tc era')

ax.set_xlabel('Year', fontsize=12)
ax.set_ylabel('Critical Temperature Tc (K)', fontsize=12)
ax.set_title('Evolution of Superconductor Critical Temperatures', fontsize=14)
ax.set_xlim(1900, 2025)
ax.set_ylim(0, 220)

# Create legend for categories
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=c, label=cat) for cat, c in color_map.items()]
ax.legend(handles=legend_elements, loc='upper left', fontsize=10)

plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

3.4 Iron-Based Superconductors

In 2008, Hosono and colleagues in Japan discovered superconductivity in iron-arsenide compounds. This was surprising because iron is magnetic and usually suppresses superconductivity.

Iron Pnictides and Chalcogenides

Why Iron-Based Superconductors Matter

3.5 Comparing Superconductor Classes

import numpy as np
import matplotlib.pyplot as plt

# Comprehensive comparison data
materials = {
    # Low-Tc
    'NbTi': {'Tc': 10, 'Hc2': 15, 'Jc': 3000, 'class': 'Low-Tc', 'practical': True},
    'Nb₃Sn': {'Tc': 18, 'Hc2': 24, 'Jc': 2000, 'class': 'Low-Tc', 'practical': True},
    'MgB₂': {'Tc': 39, 'Hc2': 16, 'Jc': 1000, 'class': 'Low-Tc', 'practical': True},
    # High-Tc
    'YBCO': {'Tc': 93, 'Hc2': 100, 'Jc': 5000, 'class': 'High-Tc', 'practical': True},
    'BSCCO': {'Tc': 110, 'Hc2': 60, 'Jc': 500, 'class': 'High-Tc', 'practical': True},
    'Hg-1223': {'Tc': 133, 'Hc2': 100, 'Jc': 100, 'class': 'High-Tc', 'practical': False},
    # Iron-based
    'Fe-pnictide': {'Tc': 55, 'Hc2': 80, 'Jc': 500, 'class': 'Fe-based', 'practical': False},
}

fig, axes = plt.subplots(1, 3, figsize=(15, 5))

# Color by class
class_colors = {'Low-Tc': 'blue', 'High-Tc': 'red', 'Fe-based': 'green'}

# Plot 1: Tc comparison
ax1 = axes[0]
names = list(materials.keys())
Tc_vals = [materials[m]['Tc'] for m in names]
colors = [class_colors[materials[m]['class']] for m in names]
bars = ax1.barh(names, Tc_vals, color=colors, alpha=0.7)
ax1.axvline(x=77, color='cyan', linestyle='--', label='LN₂ (77K)')
ax1.set_xlabel('Tc (K)', fontsize=12)
ax1.set_title('Critical Temperature', fontsize=14)
ax1.legend()

# Plot 2: Hc2 comparison
ax2 = axes[1]
Hc2_vals = [materials[m]['Hc2'] for m in names]
bars = ax2.barh(names, Hc2_vals, color=colors, alpha=0.7)
ax2.set_xlabel('Hc2 (T)', fontsize=12)
ax2.set_title('Upper Critical Field', fontsize=14)

# Plot 3: Practical status
ax3 = axes[2]
practical = ['Yes' if materials[m]['practical'] else 'No' for m in names]
practical_colors = ['green' if p == 'Yes' else 'gray' for p in practical]
ax3.barh(names, [1]*len(names), color=practical_colors, alpha=0.7)
ax3.set_xlabel('', fontsize=12)
ax3.set_title('Practical Applications', fontsize=14)
ax3.set_xlim(0, 1.5)
ax3.set_xticks([])
for i, (name, prac) in enumerate(zip(names, practical)):
    ax3.text(0.5, i, prac, ha='center', va='center', fontsize=11, fontweight='bold')

# Add legend
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=c, label=cat, alpha=0.7)
                   for cat, c in class_colors.items()]
fig.legend(handles=legend_elements, loc='upper center', ncol=3,
          bbox_to_anchor=(0.5, 1.02), fontsize=11)

plt.tight_layout()
plt.subplots_adjust(top=0.88)
plt.show()

3.6 Material Selection for Applications

ApplicationKey RequirementsTypical MaterialReason
MRI magnetsStable, low costNbTiReliable, economical
Particle acceleratorsHigh field (>10T)Nb₃SnHigher Hc2 than NbTi
Power cablesHigh current, LN₂ coolingYBCO, BSCCOOperate above 77K
Fault current limitersFast transitionYBCOSharp transition
SQUID sensorsUltra-low noiseNb, YBCOWell-characterized
Quantum computingVery low noiseAl, NbClean interfaces

Summary

Key Takeaways

Practice Problems

Problem 1

Why can't YBCO replace NbTi in all applications, despite having a much higher Tc? List at least three practical limitations of cuprate superconductors.

Problem 2

A new superconductor is discovered with Tc = 50 K. What cooling options are available? Would liquid nitrogen work? Calculate the safety margin.

Problem 3

Compare the discovery timeline of superconductors. Why did it take 75 years (1911-1986) to increase Tc from 4 K to 35 K, but only 7 years (1986-1993) to reach 133 K?