Learning Objectives
- Distinguish between different types of high-entropy alloys (3d transition metal, refractory, precious metal)
- Understand the unique features and applications of high-entropy ceramics (carbides, nitrides, borides)
- Explain the structure and functional properties of high-entropy oxides
- Identify emerging HEM classes including chalcogenides and metallic glasses
- Apply composition design strategies for specific property targets
2.1 High-Entropy Alloys (HEAs)
High-entropy alloys form the largest and most studied class of HEMs. They can be broadly categorized by their constituent elements and resulting properties.
2.1.1 3d Transition Metal HEAs
The most extensively studied HEAs are based on 3d transition metals (Cr, Mn, Fe, Co, Ni, Cu). These alloys typically exhibit FCC or mixed FCC/BCC structures and offer excellent combinations of strength, ductility, and corrosion resistance.
Cantor Alloy (CoCrFeMnNi)
The archetypal high-entropy alloy with equiatomic composition. Key properties:
- Single-phase FCC structure stable to cryogenic temperatures
- Exceptional fracture toughness at 77 K (exceeding most steels)
- Yield strength: ~200 MPa (annealed), >1 GPa (severely deformed)
- Elongation: 50-70% (room temperature)
| Alloy System | Structure | Key Properties | Applications |
|---|---|---|---|
| CoCrFeMnNi | FCC | High ductility, cryogenic toughness | Cryogenic, structural |
| CoCrFeNi | FCC | Corrosion resistance, simpler processing | Chemical, marine |
| AlCoCrFeNi | FCC/BCC (Al-dependent) | High hardness, oxidation resistance | High-temperature, wear |
| CoCrFeNiMn | FCC | Superior work hardening | Impact, armor |
| AlxCoCrCuFeNi | FCC + BCC | Tunable phases, precipitation hardening | Structural, coatings |
Effect of Aluminum Addition
Aluminum is a powerful BCC stabilizer in transition metal HEAs. In AlxCoCrFeNi:
- \(x < 0.45\): Single-phase FCC
- \(0.45 < x < 0.88\): Dual-phase FCC + BCC
- \(x > 0.88\): Single-phase BCC
This allows systematic tuning of properties from ductility-dominated (FCC) to strength-dominated (BCC).
2.1.2 Refractory High-Entropy Alloys
Refractory HEAs (RHEAs) are based on high-melting-point elements from Groups 4-6 (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W). These alloys are designed for extreme high-temperature applications beyond the capability of nickel superalloys.
Refractory HEAs
HEAs composed primarily of refractory elements with melting points >1850°C. Typically form BCC solid solutions due to the BCC crystal structure preference of constituent elements.
| Alloy | Melting Point Range (°C) | Density (g/cm³) | Notable Properties |
|---|---|---|---|
| WMoTaNb | 2800-3200 | ~13.8 | Highest melting point HEA |
| VNbMoTaW | 2400-2800 | ~12.4 | High-T strength retention |
| HfNbTaTiZr | 1900-2200 | ~9.9 | Lower density, biocompatibility |
| CrMoNbTaVW | 2500-3000 | ~11.5 | Oxidation resistance with Cr |
Challenges with Refractory HEAs
- Density: Many RHEAs have densities >10 g/cm³, limiting aerospace applications
- Ductility: BCC structure often results in limited room-temperature ductility
- Oxidation: Some elements (Mo, W) form volatile oxides at high temperatures
- Cost: Refractory elements are expensive and difficult to process
2.1.3 Light-Weight HEAs
Light-weight HEAs target low density for transportation and aerospace applications by incorporating light elements (Al, Ti, Mg, Li, Be, Sc).
import numpy as np
import matplotlib.pyplot as plt
# Comparison of HEA types by density and specific strength
hea_types = {
'3d TM HEAs': {'density': 8.0, 'strength': 800, 'examples': ['CoCrFeMnNi', 'AlCoCrFeNi']},
'Refractory HEAs': {'density': 12.5, 'strength': 1200, 'examples': ['WMoTaNb', 'VNbMoTaW']},
'Light-weight HEAs': {'density': 4.5, 'strength': 600, 'examples': ['AlLiMgScTi', 'AlMgTiVZn']},
'Eutectic HEAs': {'density': 7.5, 'strength': 1500, 'examples': ['AlCoCrFeNi2.1']},
'Conventional Al alloys': {'density': 2.8, 'strength': 500, 'examples': ['7075-T6']},
'Ni superalloys': {'density': 8.5, 'strength': 1100, 'examples': ['Inconel 718']},
}
# Calculate specific strength
for hea_type, props in hea_types.items():
props['specific_strength'] = props['strength'] / props['density']
# Visualization
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
# Density vs Strength plot
ax1 = axes[0]
colors = plt.cm.Set2(np.linspace(0, 1, len(hea_types)))
for i, (name, props) in enumerate(hea_types.items()):
ax1.scatter(props['density'], props['strength'], s=200, c=[colors[i]],
edgecolors='black', linewidth=1.5, label=name, zorder=5)
# Add specific strength contours
densities = np.linspace(2, 15, 100)
for ss in [50, 100, 150, 200]:
strengths = ss * densities
ax1.plot(densities, strengths, '--', color='gray', alpha=0.5, linewidth=1)
ax1.text(14, ss*14, f'{ss} MPa/(g/cm³)', fontsize=8, color='gray')
ax1.set_xlabel('Density (g/cm³)', fontsize=12)
ax1.set_ylabel('Yield Strength (MPa)', fontsize=12)
ax1.set_title('Density vs. Strength for Different HEA Types', fontsize=14)
ax1.legend(loc='upper left', fontsize=9)
ax1.set_xlim(2, 15)
ax1.set_ylim(0, 1800)
ax1.grid(True, alpha=0.3)
# Specific strength comparison
ax2 = axes[1]
names = list(hea_types.keys())
specific_strengths = [props['specific_strength'] for props in hea_types.values()]
bars = ax2.barh(names, specific_strengths, color=colors, edgecolor='black', linewidth=1)
ax2.set_xlabel('Specific Strength (MPa·cm³/g)', fontsize=12)
ax2.set_title('Specific Strength Comparison', fontsize=14)
ax2.grid(axis='x', alpha=0.3)
for bar, val in zip(bars, specific_strengths):
ax2.text(val + 2, bar.get_y() + bar.get_height()/2,
f'{val:.0f}', va='center', fontsize=10)
plt.tight_layout()
plt.show()
2.1.4 Eutectic High-Entropy Alloys (EHEAs)
Eutectic HEAs combine the benefits of HEAs with eutectic microstructures, achieving exceptional combinations of strength and ductility through in-situ composite formation.
Eutectic High-Entropy Alloys
HEAs designed to solidify at or near a eutectic composition, forming lamellar or rod-like microstructures of alternating FCC and BCC (or B2) phases. The AlCoCrFeNi₂.₁ alloy is the archetypal EHEA with tensile strength >1 GPa and >15% elongation.
2.2 High-Entropy Ceramics (HECs)
The high-entropy concept has been extended beyond metals to ceramics, creating materials with exceptional hardness, thermal stability, and wear resistance.
2.2.1 High-Entropy Carbides
High-entropy carbides (HE carbides) are formed by combining multiple transition metal carbides (typically Group 4 and 5 elements) on a rock-salt crystal structure.
Rock-Salt Structure HE Carbides
In (M₁M₂M₃M₄M₅)C, metal cations randomly occupy one FCC sublattice while carbon anions occupy the other FCC sublattice, creating a NaCl-type structure. The configurational entropy applies only to the metal sublattice:
\[ \Delta S_{conf} = -R \sum_{i=1}^{5} x_i \ln x_i \]
| Property | (TiZrHfNbTa)C | TiC (Reference) | ZrC (Reference) |
|---|---|---|---|
| Hardness (GPa) | 32-36 | 28-35 | 25-29 |
| Melting Point (°C) | >3800 | 3067 | 3540 |
| Thermal Conductivity | Low (entropy scattering) | Moderate | Moderate |
| Oxidation Resistance | Enhanced | Moderate | Good |
2.2.2 High-Entropy Nitrides and Borides
Similar to carbides, high-entropy nitrides and borides exhibit enhanced hardness, thermal stability, and often improved oxidation resistance compared to binary compounds.
Structure Considerations
- Nitrides: Rock-salt structure similar to carbides; (TiZrHfNbTa)N is widely studied
- Borides: AlB₂-type hexagonal structure; enhanced oxidation resistance for ultra-high temperature applications
- Carbonitrides: Solid solutions with both C and N on anion sites; (TiZrHfNbTa)(C,N)
2.3 High-Entropy Oxides (HEOs)
High-entropy oxides represent a particularly exciting class of HEMs due to their functional properties in energy storage, catalysis, and thermal barrier applications.
2.3.1 Rock-Salt HEOs
The first high-entropy oxide, (MgCoNiCuZn)O, was reported in 2015 and adopts the rock-salt structure. This discovery opened a new frontier in HEM research.
Entropy-Stabilized Oxides
Oxides where the single-phase solid solution is stabilized primarily by configurational entropy rather than enthalpy. These materials may decompose into multiple phases at lower temperatures where the entropy contribution becomes insufficient.
import numpy as np
import matplotlib.pyplot as plt
def gibbs_free_energy_heo(T, delta_H_mix, n_components):
"""
Calculate Gibbs free energy for HEO formation.
Parameters:
-----------
T : float or array
Temperature in Kelvin
delta_H_mix : float
Enthalpy of mixing in kJ/mol
n_components : int
Number of cation components
Returns:
--------
float or array : Gibbs free energy in kJ/mol
"""
R = 8.314e-3 # kJ/(mol·K)
# Configurational entropy for equiatomic system
S_conf = -R * n_components * (1/n_components) * np.log(1/n_components)
# Gibbs free energy
delta_G = delta_H_mix - T * S_conf
return delta_G, S_conf
# Temperature range
T = np.linspace(300, 1500, 100)
# Compare different systems
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
# Effect of enthalpy
ax1 = axes[0]
delta_H_values = [5, 10, 15, 20] # kJ/mol (positive = unfavorable)
n = 5
for dH in delta_H_values:
dG, _ = gibbs_free_energy_heo(T, dH, n)
ax1.plot(T, dG, linewidth=2, label=f'ΔH_mix = {dH} kJ/mol')
ax1.axhline(y=0, color='black', linestyle='--', linewidth=1)
ax1.set_xlabel('Temperature (K)', fontsize=12)
ax1.set_ylabel('ΔG_mix (kJ/mol)', fontsize=12)
ax1.set_title('Gibbs Free Energy vs Temperature\n(5-component HEO)', fontsize=14)
ax1.legend()
ax1.grid(True, alpha=0.3)
ax1.set_xlim(300, 1500)
# Highlight entropy-stabilized region
ax1.fill_between(T, ax1.get_ylim()[0], 0, where=(gibbs_free_energy_heo(T, 15, 5)[0] < 0),
alpha=0.2, color='green', label='Stable region')
# Effect of number of components
ax2 = axes[1]
n_values = [3, 4, 5, 6, 7]
dH = 15 # kJ/mol
for n in n_values:
dG, S = gibbs_free_energy_heo(T, dH, n)
ax2.plot(T, dG, linewidth=2, label=f'{n} components (S = {S:.3f}R)')
ax2.axhline(y=0, color='black', linestyle='--', linewidth=1)
ax2.set_xlabel('Temperature (K)', fontsize=12)
ax2.set_ylabel('ΔG_mix (kJ/mol)', fontsize=12)
ax2.set_title(f'Effect of Number of Components\n(ΔH_mix = {dH} kJ/mol)', fontsize=14)
ax2.legend()
ax2.grid(True, alpha=0.3)
ax2.set_xlim(300, 1500)
plt.tight_layout()
plt.show()
# Calculate transition temperature
print("=== Entropy Stabilization Temperatures ===")
print("(Temperature where ΔG = 0 for different systems)")
R = 8.314e-3
for n in [3, 4, 5, 6, 7]:
S_conf = -R * n * (1/n) * np.log(1/n)
for dH in [10, 15, 20]:
T_trans = dH / S_conf
print(f" {n} components, ΔH = {dH} kJ/mol: T_transition = {T_trans:.0f} K")
2.3.2 Spinel and Perovskite HEOs
Beyond rock-salt structures, HEOs can adopt more complex crystal structures:
| Structure | General Formula | Example HEO | Applications |
|---|---|---|---|
| Rock-salt | (M₁...M₅)O | (MgCoNiCuZn)O | Li-ion anodes, dielectrics |
| Spinel | (M₁...M₅)₃O₄ | (CrMnFeCoNi)₃O₄ | Catalysis, magnetic |
| Perovskite | (M₁...M₅)BO₃ | (GdLaNdSmY)CoO₃ | Solid oxide fuel cells |
| Fluorite | (M₁...M₅)O₂ | (HfZrCeTiSn)O₂ | Thermal barriers, ionic conductors |
| Pyrochlore | (M₁...M₅)₂Zr₂O₇ | (LaSmGdDyY)₂Zr₂O₇ | Thermal barrier coatings |
2.3.3 Functional Properties of HEOs
HEOs exhibit remarkable functional properties that make them attractive for energy applications:
HEOs for Energy Storage
- Li-ion batteries: Rock-salt HEOs show excellent cycling stability as conversion-type anodes
- Supercapacitors: Spinel HEOs provide high capacitance through multiple redox couples
- Hydrogen storage: Some HEOs can reversibly absorb hydrogen
- Solid electrolytes: Fluorite and perovskite HEOs exhibit enhanced ionic conductivity
2.4 Emerging HEM Classes
2.4.1 High-Entropy Chalcogenides
High-entropy chalcogenides (sulfides, selenides, tellurides) are emerging as promising materials for thermoelectric and photovoltaic applications.
High-Entropy Chalcogenides
Multi-cation chalcogenide compounds where multiple metal cations share crystallographic sites while chalcogen anions (S, Se, Te) occupy the anion sublattice. Examples include (AgPbSnGeBi)₂Te₃ for thermoelectrics.
Thermoelectric HE Chalcogenides
The combination of high electrical conductivity (metallic sublattice) with low thermal conductivity (phonon scattering from lattice disorder) makes HE chalcogenides excellent thermoelectric materials. The figure of merit ZT can exceed 1.5 in optimized compositions.
2.4.2 High-Entropy Metallic Glasses
Combining high-entropy composition with amorphous structure creates a unique class of materials with exceptional glass-forming ability and mechanical properties.
import numpy as np
import matplotlib.pyplot as plt
def calculate_glass_forming_ability(compositions, T_g, T_l, T_x):
"""
Calculate glass-forming ability parameters.
Parameters:
-----------
compositions : dict
Element mole fractions
T_g : float
Glass transition temperature (K)
T_l : float
Liquidus temperature (K)
T_x : float
Crystallization temperature (K)
Returns:
--------
dict : GFA parameters
"""
# Reduced glass transition temperature
T_rg = T_g / T_l
# Gamma parameter (Lu and Liu)
gamma = T_x / (T_g + T_l)
# Delta parameter (Chen)
delta = T_x / (T_l - T_g) if T_l > T_g else float('inf')
# Configurational entropy (for HE effect)
x = np.array(list(compositions.values()))
x = x[x > 0]
S_conf = -8.314 * np.sum(x * np.log(x))
return {
'T_rg': T_rg,
'gamma': gamma,
'delta': delta,
'S_conf': S_conf
}
# Example: Compare GFA of different systems
systems = {
'Conventional BMG\n(Zr-Cu-Ni-Al)': {
'compositions': {'Zr': 0.55, 'Cu': 0.30, 'Ni': 0.05, 'Al': 0.10},
'T_g': 683, 'T_l': 1115, 'T_x': 758
},
'HE-BMG 1\n(TiZrHfCuNiBe)': {
'compositions': {'Ti': 0.167, 'Zr': 0.167, 'Hf': 0.167,
'Cu': 0.167, 'Ni': 0.167, 'Be': 0.167},
'T_g': 693, 'T_l': 1050, 'T_x': 773
},
'HE-BMG 2\n(TiZrCuNiAlBe)': {
'compositions': {'Ti': 0.15, 'Zr': 0.20, 'Cu': 0.15,
'Ni': 0.15, 'Al': 0.15, 'Be': 0.20},
'T_g': 698, 'T_l': 1020, 'T_x': 785
}
}
# Calculate GFA parameters
results = {}
for name, data in systems.items():
results[name] = calculate_glass_forming_ability(
data['compositions'], data['T_g'], data['T_l'], data['T_x']
)
# Visualization
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# T_rg comparison
ax1 = axes[0]
names = list(results.keys())
T_rg_values = [results[name]['T_rg'] for name in names]
bars1 = ax1.bar(names, T_rg_values, color=['#3498db', '#e74c3c', '#27ae60'],
edgecolor='black', linewidth=1)
ax1.set_ylabel('Reduced Glass Transition T_rg', fontsize=12)
ax1.set_title('Glass Forming Ability\n(Higher T_rg = Better GFA)', fontsize=12)
ax1.axhline(y=0.6, color='gray', linestyle='--', alpha=0.7)
ax1.set_ylim(0.5, 0.75)
for bar, val in zip(bars1, T_rg_values):
ax1.text(bar.get_x() + bar.get_width()/2, val + 0.01,
f'{val:.3f}', ha='center', fontsize=10)
# Gamma comparison
ax2 = axes[1]
gamma_values = [results[name]['gamma'] for name in names]
bars2 = ax2.bar(names, gamma_values, color=['#3498db', '#e74c3c', '#27ae60'],
edgecolor='black', linewidth=1)
ax2.set_ylabel('Gamma Parameter', fontsize=12)
ax2.set_title('Crystallization Resistance\n(Higher gamma = Better)', fontsize=12)
ax2.set_ylim(0.3, 0.5)
for bar, val in zip(bars2, gamma_values):
ax2.text(bar.get_x() + bar.get_width()/2, val + 0.005,
f'{val:.3f}', ha='center', fontsize=10)
# Configurational entropy
ax3 = axes[2]
S_values = [results[name]['S_conf'] for name in names]
bars3 = ax3.bar(names, np.array(S_values)/8.314, color=['#3498db', '#e74c3c', '#27ae60'],
edgecolor='black', linewidth=1)
ax3.set_ylabel('Configurational Entropy (R)', fontsize=12)
ax3.set_title('Entropy Contribution\n(Higher = More HE Character)', fontsize=12)
ax3.axhline(y=1.5, color='red', linestyle='--', alpha=0.7, label='HE threshold')
ax3.legend()
for bar, val in zip(bars3, np.array(S_values)/8.314):
ax3.text(bar.get_x() + bar.get_width()/2, val + 0.05,
f'{val:.2f}R', ha='center', fontsize=10)
plt.tight_layout()
plt.show()
2.4.3 High-Entropy Intermetallics
While the original HEA concept emphasized solid solutions, some researchers have explored high-entropy versions of ordered intermetallic structures such as B2, L1₂, and Laves phases.
2.5 Composition Design Strategies
2.5.1 Empirical Parameter Approach
The most common approach uses combinations of empirical parameters to screen compositions:
import numpy as np
import matplotlib.pyplot as plt
from itertools import combinations
# Element database (subset for demonstration)
element_data = {
'Co': {'r': 1.252, 'VEC': 9, 'Tm': 1768, 'chi': 1.88},
'Cr': {'r': 1.249, 'VEC': 6, 'Tm': 2180, 'chi': 1.66},
'Fe': {'r': 1.241, 'VEC': 8, 'Tm': 1811, 'chi': 1.83},
'Mn': {'r': 1.350, 'VEC': 7, 'Tm': 1519, 'chi': 1.55},
'Ni': {'r': 1.246, 'VEC': 10, 'Tm': 1728, 'chi': 1.91},
'Al': {'r': 1.432, 'VEC': 3, 'Tm': 933, 'chi': 1.61},
'Ti': {'r': 1.462, 'VEC': 4, 'Tm': 1941, 'chi': 1.54},
'Cu': {'r': 1.278, 'VEC': 11, 'Tm': 1358, 'chi': 1.90},
'V': {'r': 1.316, 'VEC': 5, 'Tm': 2183, 'chi': 1.63},
'Nb': {'r': 1.429, 'VEC': 5, 'Tm': 2750, 'chi': 1.60},
}
def screen_hea_composition(elements, compositions=None):
"""
Screen HEA composition using empirical parameters.
Parameters:
-----------
elements : list
List of element symbols
compositions : array-like, optional
Mole fractions (equiatomic if None)
Returns:
--------
dict : Screening parameters and predictions
"""
n = len(elements)
if compositions is None:
x = np.ones(n) / n # Equiatomic
else:
x = np.array(compositions)
# Extract element data
r = np.array([element_data[el]['r'] for el in elements])
vec = np.array([element_data[el]['VEC'] for el in elements])
Tm = np.array([element_data[el]['Tm'] for el in elements])
chi = np.array([element_data[el]['chi'] for el in elements])
# Calculate parameters
# Average atomic radius
r_avg = np.sum(x * r)
# Atomic size difference (delta)
delta = 100 * np.sqrt(np.sum(x * (1 - r/r_avg)**2))
# VEC
VEC = np.sum(x * vec)
# Electronegativity difference
chi_avg = np.sum(x * chi)
delta_chi = np.sqrt(np.sum(x * (chi - chi_avg)**2))
# Configurational entropy
x_nz = x[x > 0]
S_conf = -np.sum(x_nz * np.log(x_nz)) # In units of R
# Predictions
# Phase structure
if VEC >= 8.0:
predicted_structure = 'FCC'
elif VEC < 6.87:
predicted_structure = 'BCC'
else:
predicted_structure = 'FCC+BCC'
# Single phase formation
single_phase = delta < 6.6
return {
'elements': elements,
'compositions': x,
'delta': delta,
'VEC': VEC,
'delta_chi': delta_chi,
'S_conf': S_conf,
'predicted_structure': predicted_structure,
'single_phase_likely': single_phase
}
# Example: Design HEAs for different applications
print("=== HEA Composition Screening ===\n")
# FCC HEA for cryogenic applications
fcc_hea = screen_hea_composition(['Co', 'Cr', 'Fe', 'Mn', 'Ni'])
print(f"FCC HEA (CoCrFeMnNi):")
print(f" VEC = {fcc_hea['VEC']:.2f} -> {fcc_hea['predicted_structure']}")
print(f" delta = {fcc_hea['delta']:.2f}% -> {'Single phase' if fcc_hea['single_phase_likely'] else 'Multi-phase'}")
print(f" S_conf = {fcc_hea['S_conf']:.2f}R")
# BCC HEA for high-temperature
bcc_hea = screen_hea_composition(['V', 'Nb', 'Ti', 'Cr', 'Al'])
print(f"\nBCC HEA (VNbTiCrAl):")
print(f" VEC = {bcc_hea['VEC']:.2f} -> {bcc_hea['predicted_structure']}")
print(f" delta = {bcc_hea['delta']:.2f}% -> {'Single phase' if bcc_hea['single_phase_likely'] else 'Multi-phase'}")
print(f" S_conf = {bcc_hea['S_conf']:.2f}R")
# Non-equiatomic for property tuning
tuned_hea = screen_hea_composition(['Al', 'Co', 'Cr', 'Fe', 'Ni'],
[0.3, 0.175, 0.175, 0.175, 0.175])
print(f"\nTuned HEA (Al0.3CoCrFeNi):")
print(f" VEC = {tuned_hea['VEC']:.2f} -> {tuned_hea['predicted_structure']}")
print(f" delta = {tuned_hea['delta']:.2f}% -> {'Single phase' if tuned_hea['single_phase_likely'] else 'Multi-phase'}")
print(f" S_conf = {tuned_hea['S_conf']:.2f}R")
2.5.2 CALPHAD-Guided Design
The CALPHAD (CALculation of PHAse Diagrams) method provides thermodynamic predictions for phase stability in multi-component systems. Modern thermodynamic databases include many HEA-relevant element combinations.
2.5.3 Machine Learning Approaches
Machine learning is increasingly used to predict HEA properties and identify promising compositions from the vast compositional space. Common approaches include:
- Random forests and gradient boosting: Phase prediction, hardness estimation
- Neural networks: Property prediction, composition optimization
- Bayesian optimization: Efficient exploration of compositional space
- Generative models: Novel composition discovery
2.6 Summary
Key Concepts
- 3d transition metal HEAs (e.g., CoCrFeMnNi) form FCC structures with excellent ductility and cryogenic toughness
- Refractory HEAs based on Groups 4-6 elements form BCC structures suitable for high-temperature applications (>1000°C)
- Light-weight HEAs incorporating Al, Ti, Mg aim for high specific strength for transportation applications
- Eutectic HEAs combine lamellar microstructures with HE concepts for exceptional strength-ductility balance
- High-entropy carbides, nitrides, and borides exhibit exceptional hardness and thermal stability
- High-entropy oxides show unique functional properties for energy storage, catalysis, and thermal barriers
- Emerging HEMs include chalcogenides (thermoelectrics), metallic glasses (high strength), and intermetallics
- Composition design uses empirical parameters (VEC, delta, Omega), CALPHAD, and machine learning
2.7 Exercises
Conceptual Questions
- Why do 3d transition metal HEAs typically form FCC structures while refractory HEAs form BCC structures?
- Explain how eutectic HEAs achieve high strength and ductility simultaneously.
- What makes high-entropy ceramics different from high-entropy alloys in terms of entropy calculation?
- Why are high-entropy oxides particularly promising for energy storage applications?
- What are the advantages and challenges of light-weight HEAs compared to conventional aluminum alloys?
Quantitative Problems
-
Calculate the VEC and predict the structure for:
- (a) AlCoCrCuFeNi (equiatomic)
- (b) HfNbTaTiZr (equiatomic)
- (c) Al₀.₅CoCrFeNi (normalized)
-
For the high-entropy carbide (TiZrHfNbTa)C:
- (a) Calculate the configurational entropy on the metal sublattice
- (b) Why doesn't carbon contribute to configurational entropy?
- At what temperature would an entropy-stabilized oxide with \(\Delta H_{mix} = 12\) kJ/mol and 5 equiatomic cations become thermodynamically stable?
Computational Exercises
- Create a Python function to screen all possible 5-element combinations from a set of 10 elements, ranking them by likelihood of forming single-phase FCC structures.
- Plot a "composition design map" showing VEC vs. delta for 30 different HEA compositions, color-coded by predicted structure.