English | 日本語

Chapter 3: Synthesis and Processing Methods

From Laboratory Techniques to Industrial-Scale Manufacturing

Intermediate Level 30-35 minutes Melting, Sintering, Thin Films, Additive Manufacturing

Learning Objectives

  • Understand bulk synthesis methods for HEAs including arc melting and induction melting
  • Explain the principles and advantages of spark plasma sintering for HECs and HEOs
  • Describe thin film deposition techniques including sputtering and PVD
  • Evaluate additive manufacturing approaches for HEA components
  • Apply solution-based methods for HEO nanoparticle synthesis
  • Relate processing parameters to microstructure and properties

3.1 Bulk Synthesis of High-Entropy Alloys

The synthesis of bulk HEAs presents unique challenges due to the need to achieve homogeneous mixing of multiple elements with potentially different melting points, densities, and vapor pressures. Several techniques have been developed to address these challenges.

flowchart TB Synthesis[HEA Synthesis Methods] --> Melt[Melting Routes] Synthesis --> PM[Powder Metallurgy] Synthesis --> AM[Additive Manufacturing] Melt --> Arc[Arc Melting] Melt --> Induction[Induction Melting] Melt --> Levitation[Levitation Melting] Melt --> VIM[Vacuum Induction Melting] PM --> MA[Mechanical Alloying] PM --> SPS[Spark Plasma Sintering] PM --> HIP[Hot Isostatic Pressing] AM --> SLM[Selective Laser Melting] AM --> DED[Direct Energy Deposition] AM --> EBM[Electron Beam Melting] style Synthesis fill:#e7f3ff style Melt fill:#d4edda style PM fill:#fff3cd style AM fill:#f8d7da

3.1.1 Arc Melting

Arc melting is the most common laboratory technique for HEA synthesis due to its simplicity, ability to melt high-temperature materials, and minimal contamination when performed under inert atmosphere.

Arc Melting Process

An electric arc is struck between a tungsten electrode and the charge materials placed on a water-cooled copper hearth. The intense heat (>3000°C) melts all components, allowing mixing. The process is typically performed under argon atmosphere to prevent oxidation.

Aspect Arc Melting Induction Melting
Temperature >3000°C (localized) Up to ~2000°C (bulk)
Sample size 5-100 g (typical) 100 g - 100 kg
Mixing Requires multiple remelts Electromagnetic stirring
Atmosphere Argon Vacuum or inert gas
Refractory alloys Excellent Limited by crucible
Scale-up Difficult Industrial-ready

Practical Considerations for Arc Melting

  • Multiple remelts: Flip and remelt 3-5 times to ensure homogeneity
  • Volatile elements: Elements like Mn, Zn may evaporate; compensate in starting composition
  • Density segregation: Heavy elements (W, Ta) may segregate; thorough mixing needed
  • Oxygen pickup: Use high-purity argon and Ti getter button
  • Cooling rate: ~100-1000 K/s on copper hearth; affects microstructure

3.1.2 Induction Melting

Vacuum induction melting (VIM) is preferred for larger-scale HEA production and when precise control over atmosphere and composition is required.

import numpy as np
import matplotlib.pyplot as plt

def calculate_evaporation_loss(elements, temperatures, time_minutes, pressures_torr):
    """
    Estimate evaporation losses during melting using Langmuir equation.

    The Langmuir equation for evaporation rate:
    G = p_vap * sqrt(M / (2 * pi * R * T))

    where G is mass flux (kg/m²/s), p_vap is vapor pressure (Pa),
    M is molar mass (kg/mol), R is gas constant, T is temperature (K)
    """
    # Vapor pressure coefficients (simplified Antoine equation)
    # log10(P_torr) = A - B/T
    vapor_params = {
        'Mn': {'A': 11.83, 'B': 15097, 'M': 54.94},
        'Zn': {'A': 10.38, 'B': 6776, 'M': 65.38},
        'Mg': {'A': 10.95, 'B': 7813, 'M': 24.31},
        'Cr': {'A': 12.01, 'B': 20733, 'M': 52.00},
        'Al': {'A': 11.31, 'B': 16211, 'M': 26.98},
        'Cu': {'A': 11.66, 'B': 17520, 'M': 63.55},
        'Ni': {'A': 12.21, 'B': 22607, 'M': 58.69},
        'Fe': {'A': 11.77, 'B': 21723, 'M': 55.85},
        'Co': {'A': 12.08, 'B': 22193, 'M': 58.93},
    }

    R = 8.314  # J/(mol·K)
    time_s = time_minutes * 60

    results = {}
    for element in elements:
        if element in vapor_params:
            params = vapor_params[element]
            for T in temperatures:
                # Vapor pressure (convert torr to Pa)
                log_p = params['A'] - params['B'] / T
                p_vap = (10 ** log_p) * 133.322  # Pa

                # Langmuir evaporation rate
                M = params['M'] * 1e-3  # kg/mol
                G = p_vap * np.sqrt(M / (2 * np.pi * R * T))

                # Total loss (assuming 1 cm² surface)
                loss_mg = G * 1e-4 * time_s * 1e6  # mg

                if element not in results:
                    results[element] = []
                results[element].append(loss_mg)

    return results

# Analyze evaporation during arc melting
elements = ['Mn', 'Zn', 'Al', 'Cr', 'Cu', 'Ni', 'Fe', 'Co']
temperatures = np.linspace(1800, 2500, 50)  # K
time = 1  # minute

fig, ax = plt.subplots(figsize=(10, 6))

results = calculate_evaporation_loss(elements, temperatures, time, 760)

for element, losses in results.items():
    ax.semilogy(temperatures - 273, losses, linewidth=2, label=element)

ax.set_xlabel('Temperature (°C)', fontsize=12)
ax.set_ylabel('Evaporation Rate (mg/cm²/min)', fontsize=12)
ax.set_title('Estimated Evaporation Losses During Melting\n(Atmospheric pressure, 1 minute)', fontsize=14)
ax.legend(loc='upper left')
ax.grid(True, alpha=0.3)
ax.set_xlim(1527, 2227)

plt.tight_layout()
plt.show()

print("=== Composition Compensation for Arc Melting ===")
print("Volatile elements require excess in starting composition:")
print("  - Mn: Add 2-5% excess for equiatomic target")
print("  - Zn: Add 5-10% excess (very volatile)")
print("  - Al: Add 1-2% excess")
print("  - Cr: Minimal loss at typical conditions")

3.1.3 Mechanical Alloying

Mechanical alloying (MA) is a solid-state powder processing technique that can produce HEA powders through repeated cold welding and fracturing of elemental particles.

Mechanical Alloying

A high-energy ball milling process where elemental powders are subjected to repeated deformation, cold welding, and fracturing. This produces fine-grained or even nanocrystalline HEA powders without melting. Typical milling times range from 10 to 100 hours.

Advantages of Mechanical Alloying for HEMs

  • Low processing temperature: No melting required, avoiding segregation
  • Extended solid solubility: Can form supersaturated solid solutions
  • Nanocrystalline structure: Grain sizes down to 5-20 nm achievable
  • Flexibility: Can process elements with very different melting points
  • HE ceramics: Effective for carbide, nitride precursor preparation

3.2 Spark Plasma Sintering (SPS)

Spark plasma sintering is a powder consolidation technique particularly well-suited for HECs and HEOs due to its rapid heating rates and ability to achieve high densities at lower temperatures than conventional sintering.

Spark Plasma Sintering

A pressure-assisted sintering technique where pulsed DC current flows through the die and powder compact, generating rapid heating through Joule heating and potentially plasma formation at particle contacts. Heating rates of 100-1000°C/min are achievable.

flowchart LR subgraph SPS Process direction TB A[Powder Loading] --> B[Apply Pressure] B --> C[Pulsed DC Current] C --> D[Rapid Heating] D --> E[Densification] E --> F[Controlled Cooling] end subgraph Parameters direction TB P1[Temperature: 1200-2000°C] P2[Pressure: 30-100 MPa] P3[Time: 5-30 min] P4[Heating rate: 100-500°C/min] end
Parameter SPS Hot Pressing Conventional Sintering
Heating rate 100-1000°C/min 5-20°C/min 1-10°C/min
Hold time 5-30 min 30-120 min Hours
Max temperature 2400°C 2000°C 1800°C
Grain growth Minimal Moderate Significant
Final density >99% 95-99% 90-97%
Best for HECs Excellent Good Limited
import numpy as np
import matplotlib.pyplot as plt

def sps_temperature_profile(target_temp, heating_rate, hold_time, cooling_rate):
    """
    Generate typical SPS temperature profile.

    Parameters:
    -----------
    target_temp : float
        Target sintering temperature (°C)
    heating_rate : float
        Heating rate (°C/min)
    hold_time : float
        Hold time at target temperature (min)
    cooling_rate : float
        Cooling rate (°C/min)

    Returns:
    --------
    tuple : (time array in min, temperature array in °C)
    """
    T_start = 25  # Room temperature

    # Calculate time segments
    t_heat = (target_temp - T_start) / heating_rate
    t_hold = hold_time
    t_cool = (target_temp - T_start) / cooling_rate

    # Generate profiles
    dt = 0.1  # Time step (min)

    # Heating phase
    t_heating = np.arange(0, t_heat, dt)
    T_heating = T_start + heating_rate * t_heating

    # Hold phase
    t_holding = np.arange(0, t_hold, dt) + t_heat
    T_holding = np.ones_like(t_holding) * target_temp

    # Cooling phase
    t_cooling = np.arange(0, t_cool, dt) + t_heat + t_hold
    T_cooling = target_temp - cooling_rate * (t_cooling - t_heat - t_hold)

    # Combine
    time = np.concatenate([t_heating, t_holding, t_cooling])
    temperature = np.concatenate([T_heating, T_holding, T_cooling])

    return time, temperature

# Compare SPS profiles for different HEM types
fig, axes = plt.subplots(1, 2, figsize=(14, 5))

# HE Carbide sintering profile
ax1 = axes[0]
t1, T1 = sps_temperature_profile(1800, 200, 10, 100)
ax1.plot(t1, T1, 'b-', linewidth=2, label='HE Carbide (1800°C)')

t2, T2 = sps_temperature_profile(1600, 200, 10, 100)
ax1.plot(t2, T2, 'g-', linewidth=2, label='HE Nitride (1600°C)')

t3, T3 = sps_temperature_profile(1400, 150, 15, 80)
ax1.plot(t3, T3, 'r-', linewidth=2, label='HE Oxide (1400°C)')

ax1.set_xlabel('Time (min)', fontsize=12)
ax1.set_ylabel('Temperature (°C)', fontsize=12)
ax1.set_title('Typical SPS Temperature Profiles for HECs', fontsize=14)
ax1.legend()
ax1.grid(True, alpha=0.3)

# Effect of heating rate on grain size
ax2 = axes[1]
heating_rates = [50, 100, 200, 300, 500]
grain_sizes = [2.5, 1.8, 1.2, 0.9, 0.7]  # Hypothetical values (μm)
relative_density = [98.5, 99.1, 99.5, 99.3, 98.8]  # %

ax2_twin = ax2.twinx()

bars = ax2.bar(np.arange(len(heating_rates)) - 0.2, grain_sizes, 0.4,
               color='steelblue', edgecolor='navy', label='Grain size')
ax2.set_ylabel('Grain Size (μm)', fontsize=12, color='steelblue')
ax2.tick_params(axis='y', labelcolor='steelblue')

line = ax2_twin.plot(np.arange(len(heating_rates)) + 0.2, relative_density,
                      'ro-', markersize=10, linewidth=2, label='Relative density')
ax2_twin.set_ylabel('Relative Density (%)', fontsize=12, color='red')
ax2_twin.tick_params(axis='y', labelcolor='red')
ax2_twin.set_ylim(97, 100)

ax2.set_xticks(np.arange(len(heating_rates)))
ax2.set_xticklabels([f'{r}' for r in heating_rates])
ax2.set_xlabel('Heating Rate (°C/min)', fontsize=12)
ax2.set_title('Effect of Heating Rate on Microstructure', fontsize=14)

# Combined legend
lines1, labels1 = ax2.get_legend_handles_labels()
lines2, labels2 = ax2_twin.get_legend_handles_labels()
ax2.legend(lines1 + lines2, labels1 + labels2, loc='center right')

plt.tight_layout()
plt.show()

3.3 Thin Film and Coating Deposition

HEM thin films and coatings are increasingly important for surface engineering applications including wear resistance, corrosion protection, and functional devices.

3.3.1 Magnetron Sputtering

Magnetron Sputtering for HEMs

A physical vapor deposition (PVD) technique where ions from a plasma bombard a target (cathode), ejecting atoms that deposit on a substrate. For HEMs, either composite targets or co-sputtering from multiple elemental targets can be used.

Approach Description Advantages Challenges
Single alloy target Pre-alloyed HEA target Simple setup, reproducible Target fabrication, fixed composition
Segmented target Sectors of different elements Moderate flexibility Rotation required for uniformity
Co-sputtering Multiple targets simultaneously Full composition control Complex setup, calibration needed
HiPIMS High-power impulse magnetron Dense films, good adhesion Lower deposition rate

3.3.2 Other Deposition Techniques

3.4 Additive Manufacturing

Additive manufacturing (AM) offers unique opportunities for HEA processing, including complex geometries, functionally graded materials, and localized composition control.

3.4.1 Selective Laser Melting (SLM)

Selective Laser Melting

A powder bed fusion process where a laser selectively melts regions of a powder layer according to CAD geometry. Typical layer thickness is 20-100 μm. The rapid melting and solidification (10⁵-10⁶ K/s) results in fine microstructures.

flowchart TB subgraph SLM Process A[Powder Spreading] --> B[Laser Scanning] B --> C[Melting & Solidification] C --> D[Platform Lowering] D --> A end subgraph Key Parameters P1[Laser power: 100-400 W] P2[Scan speed: 200-2000 mm/s] P3[Hatch spacing: 50-200 μm] P4[Layer thickness: 20-100 μm] end SLM --> VED[Volumetric Energy Density] VED --> |"E = P/(v·h·t)"| Quality style VED fill:#fff3cd
import numpy as np
import matplotlib.pyplot as plt

def volumetric_energy_density(power, scan_speed, hatch_spacing, layer_thickness):
    """
    Calculate volumetric energy density for SLM process.

    Parameters:
    -----------
    power : float
        Laser power (W)
    scan_speed : float
        Scan speed (mm/s)
    hatch_spacing : float
        Hatch spacing (μm)
    layer_thickness : float
        Layer thickness (μm)

    Returns:
    --------
    float : Volumetric energy density (J/mm³)
    """
    h_mm = hatch_spacing / 1000  # Convert to mm
    t_mm = layer_thickness / 1000  # Convert to mm
    E = power / (scan_speed * h_mm * t_mm)
    return E

# Process window analysis for HEA printing
powers = np.linspace(100, 400, 50)
scan_speeds = np.linspace(200, 2000, 50)
P, V = np.meshgrid(powers, scan_speeds)

# Fixed parameters
h = 100  # μm
t = 30   # μm

E = volumetric_energy_density(P, V, h, t)

fig, axes = plt.subplots(1, 2, figsize=(14, 5))

# Energy density map
ax1 = axes[0]
contour = ax1.contourf(P, V, E, levels=20, cmap='RdYlBu_r')
plt.colorbar(contour, ax=ax1, label='Energy Density (J/mm³)')

# Overlay process windows
ax1.contour(P, V, E, levels=[30], colors='green', linewidths=2, linestyles='--')
ax1.contour(P, V, E, levels=[60], colors='red', linewidths=2, linestyles='--')
ax1.contour(P, V, E, levels=[100], colors='darkred', linewidths=2, linestyles='--')

ax1.set_xlabel('Laser Power (W)', fontsize=12)
ax1.set_ylabel('Scan Speed (mm/s)', fontsize=12)
ax1.set_title('SLM Process Map for HEAs\n(h=100μm, t=30μm)', fontsize=14)

# Add annotations
ax1.text(350, 1800, 'Porous', fontsize=10, color='blue')
ax1.text(200, 400, 'Keyholing', fontsize=10, color='darkred')
ax1.text(280, 1000, 'Optimal\nWindow', fontsize=10, color='green',
         bbox=dict(boxstyle='round', facecolor='lightgreen', alpha=0.7))

# Defect regions
ax2 = axes[1]
# Hypothetical data showing defect density vs energy density
E_values = np.linspace(20, 120, 50)
porosity = 5 / (1 + np.exp(0.15 * (E_values - 35))) + 0.5 * np.exp(0.02 * (E_values - 80))
cracking = 0.2 + 3 / (1 + np.exp(-0.1 * (E_values - 70)))

ax2.plot(E_values, porosity, 'b-', linewidth=2, label='Porosity (%)')
ax2.plot(E_values, cracking, 'r-', linewidth=2, label='Crack density (rel.)')
ax2.axvspan(40, 70, alpha=0.2, color='green', label='Optimal window')

ax2.set_xlabel('Energy Density (J/mm³)', fontsize=12)
ax2.set_ylabel('Defect Level', fontsize=12)
ax2.set_title('Defect Analysis vs. Energy Density', fontsize=14)
ax2.legend()
ax2.grid(True, alpha=0.3)
ax2.set_xlim(20, 120)

plt.tight_layout()
plt.show()

print("=== SLM Parameter Guidelines for CoCrFeMnNi ===")
print(f"Recommended energy density: 40-70 J/mm³")
print(f"Example parameters:")
for p in [200, 250, 300]:
    v = p / (60 * 0.1 * 0.03)  # For E = 60 J/mm³
    print(f"  P = {p} W, v = {v:.0f} mm/s (h=100μm, t=30μm)")

3.4.2 Direct Energy Deposition (DED)

DED processes (also known as Laser Metal Deposition, LMD) feed powder or wire into a melt pool created by a laser or electron beam. This approach is particularly suitable for:

3.5 Solution-Based Methods

Solution-based synthesis is particularly important for HEO nanoparticles and thin films, offering excellent composition control and low processing temperatures.

3.5.1 Sol-Gel Method

Sol-Gel Synthesis of HEOs

A wet chemical process where metal precursors (typically alkoxides or salts) are dissolved, hydrolyzed, and condensed to form a gel network. Subsequent calcination converts the gel to crystalline HEO. This method provides molecular-level mixing of cations.

flowchart LR A[Metal Salts
or Alkoxides] --> B[Dissolve in
Solvent] B --> C[Add Chelating
Agent] C --> D[Gel Formation] D --> E[Drying] E --> F[Calcination
400-800°C] F --> G[Crystalline
HEO Powder] style A fill:#e7f3ff style G fill:#d4edda

3.5.2 Co-Precipitation

Co-precipitation involves simultaneous precipitation of multiple metal hydroxides or oxalates from solution, followed by calcination. Key considerations:

import numpy as np
import matplotlib.pyplot as plt

def calculate_ph_precipitation(cations, concentrations, Ksp_values):
    """
    Calculate pH for hydroxide precipitation.

    For M(OH)n precipitating: Ksp = [M^n+][OH^-]^n
    [OH^-] = (Ksp/[M^n+])^(1/n)
    pOH = -log([OH^-])
    pH = 14 - pOH

    Parameters:
    -----------
    cations : list
        Cation names
    concentrations : list
        Molar concentrations
    Ksp_values : list
        Solubility products (with n values)

    Returns:
    --------
    dict : Precipitation pH values
    """
    results = {}
    for cation, conc, (Ksp, n) in zip(cations, concentrations, Ksp_values):
        OH_conc = (Ksp / conc) ** (1/n)
        pOH = -np.log10(OH_conc)
        pH = 14 - pOH
        results[cation] = pH

    return results

# Example: (MgCoNiCuZn)O synthesis by co-precipitation
cations = ['Mg²⁺', 'Co²⁺', 'Ni²⁺', 'Cu²⁺', 'Zn²⁺']
concentrations = [0.01, 0.01, 0.01, 0.01, 0.01]  # 0.01 M each
# Ksp values and n (charges) for hydroxides
Ksp_data = [
    (5.6e-12, 2),   # Mg(OH)2
    (5.9e-15, 2),   # Co(OH)2
    (5.5e-16, 2),   # Ni(OH)2
    (2.2e-20, 2),   # Cu(OH)2
    (3.0e-17, 2),   # Zn(OH)2
]

precipitation_pH = calculate_ph_precipitation(cations, concentrations, Ksp_data)

print("=== Co-Precipitation pH Analysis for (MgCoNiCuZn)O ===")
print("\nPrecipitation onset pH for each cation (0.01 M):")
for cation, pH in sorted(precipitation_pH.items(), key=lambda x: x[1]):
    print(f"  {cation}: pH = {pH:.2f}")

# Visualization
fig, ax = plt.subplots(figsize=(10, 6))

pH_range = np.linspace(5, 12, 100)
cation_colors = plt.cm.Set1(np.linspace(0, 1, len(cations)))

for i, (cation, pH_precip) in enumerate(precipitation_pH.items()):
    # Precipitation curve (simplified sigmoid)
    precipitation_fraction = 1 / (1 + np.exp(-3 * (pH_range - pH_precip)))
    ax.plot(pH_range, precipitation_fraction * 100, linewidth=2,
            color=cation_colors[i], label=f'{cation} (pH = {pH_precip:.1f})')

ax.axvline(x=10, color='red', linestyle='--', linewidth=2, label='Target pH = 10')
ax.axhline(y=99, color='gray', linestyle=':', alpha=0.5)

ax.set_xlabel('pH', fontsize=12)
ax.set_ylabel('Precipitation Percentage (%)', fontsize=12)
ax.set_title('Hydroxide Precipitation Curves for HEO Precursors', fontsize=14)
ax.legend(loc='lower right')
ax.grid(True, alpha=0.3)
ax.set_xlim(5, 12)
ax.set_ylim(0, 105)

plt.tight_layout()
plt.show()

print("\n=== Recommended Co-Precipitation Procedure ===")
print("1. Prepare mixed metal salt solution (0.01 M each cation)")
print("2. Prepare NaOH solution (1 M)")
print("3. Add NaOH slowly while stirring at 60°C")
print("4. Target final pH: 10-11 (ensures complete precipitation)")
print("5. Age for 2-4 hours at 60°C")
print("6. Wash precipitate 3-5 times with DI water")
print("7. Dry at 80°C overnight")
print("8. Calcine at 900°C for 2 hours to form rock-salt HEO")

3.6 Processing-Structure-Property Relationships

The properties of HEMs are strongly influenced by their microstructure, which in turn depends on the synthesis and processing route. Understanding these relationships is crucial for material optimization.

Processing Route Cooling Rate Grain Size Typical Properties
Arc melting 10²-10³ K/s 50-500 μm Dendritic, some segregation
Suction casting 10³-10⁴ K/s 10-100 μm Finer dendrites, reduced segregation
Melt spinning 10⁵-10⁶ K/s 0.1-10 μm Extended solubility, nanocrystalline
SLM/AM 10⁵-10⁶ K/s 0.5-5 μm Cellular, columnar, high dislocation density
MA + SPS N/A (solid state) 0.05-1 μm Ultrafine/nanocrystalline, high strength
Sputtering ~10⁸ K/s 5-100 nm Nanocrystalline or amorphous films

Hall-Petch Strengthening in HEAs

Grain refinement is particularly effective for strengthening HEAs due to the combined effects of grain boundary strengthening and the intrinsic lattice friction stress from the high-entropy matrix. The Hall-Petch relationship:

\[ \sigma_y = \sigma_0 + k_y d^{-1/2} \]

where \(\sigma_0\) (friction stress) in HEAs is significantly higher than in conventional alloys due to lattice distortion, making grain boundary strengthening additive to solid solution strengthening.

3.7 Summary

Key Concepts

  • Arc melting is the primary laboratory technique for HEA synthesis; multiple remelts ensure homogeneity; volatile element losses must be compensated
  • Induction melting provides better mixing through electromagnetic stirring and is scalable to industrial production
  • Mechanical alloying enables solid-state synthesis of nanocrystalline powders without melting, ideal for elements with disparate melting points
  • Spark plasma sintering consolidates powders rapidly with minimal grain growth, achieving >99% density for HECs and HEOs
  • Magnetron sputtering deposits HEM thin films with controlled composition using single targets, segmented targets, or co-sputtering
  • Additive manufacturing (SLM, DED) enables complex HEA geometries with rapid solidification microstructures
  • Solution methods (sol-gel, co-precipitation) provide molecular-level mixing for HEO nanoparticle synthesis
  • Processing-structure-property relationships are governed by cooling rate (affecting grain size) and synthesis route (affecting defects and phases)

3.8 Exercises

Conceptual Questions

  1. Why is multiple remelting necessary in arc melting of HEAs? What could happen if only a single melt is performed?
  2. Explain why SPS can achieve higher density at lower temperatures compared to conventional sintering.
  3. What are the advantages and disadvantages of using a pre-alloyed target vs. co-sputtering for HEM thin films?
  4. Why does additive manufacturing of HEAs produce finer grain sizes than casting?
  5. How does the choice of precipitation agent affect HEO particle morphology in co-precipitation synthesis?

Quantitative Problems

  1. Calculate the volumetric energy density for SLM with:
    • Laser power: 280 W
    • Scan speed: 1200 mm/s
    • Hatch spacing: 80 μm
    • Layer thickness: 40 μm
    Is this within the optimal window for CoCrFeMnNi?
  2. A HEA is arc melted with 2 at.% excess Mn to compensate for evaporation. If the measured Mn loss is 1.5%, what is the final Mn content?
  3. Calculate the Hall-Petch strengthening contribution when grain size is reduced from 100 μm (cast) to 1 μm (MA+SPS), assuming \(k_y = 0.5\) MPa·m¹/².

Computational Exercises

  1. Write a Python function to optimize SLM parameters (P, v, h, t) for a target energy density of 55 J/mm³, subject to machine constraints (P ≤ 400 W, v ≥ 300 mm/s).
  2. Create a process selection flowchart (using mermaid or matplotlib) for choosing the appropriate HEM synthesis method based on material type, scale, and target properties.

Disclaimer

This educational content was generated with AI assistance for the Hashimoto Lab knowledge base. While efforts have been made to ensure accuracy, readers should verify critical information with primary sources and established textbooks such as: