4.1 Introduction
Comprehensive coverage of thin film and nanomaterial synthesis methods.
π Key Equation:
$$r_{nucleation} = A \exp\left(-\frac{\Delta G^*}{k_BT}\right)$$
π» Code Example 1: Deposition Modeling
# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0
import numpy as np
import matplotlib.pyplot as plt
def film_growth_rate(T, P):
"""Model film deposition rate"""
return P * np.exp(-50000/(8.314*(T+273)))
temps = np.linspace(200, 600, 100)
rates = [film_growth_rate(T, 100) for T in temps]
plt.semilogy(temps, rates, 'b-', linewidth=2)
plt.xlabel('Temperature (Β°C)')
plt.ylabel('Growth Rate (nm/min)')
plt.grid(True, alpha=0.3)
plt.show()4.2-4.7 Additional Sections
Growth mechanisms, process control, characterization, applications.
π» Code Examples 2-7
# Complete process modeling and analysis
# See full chapter for all code examplesSummary
- Thin film deposition by PVD, CVD, ALD
- Nanomaterial synthesis and characterization
- Applications in electronics, optics, energy