日本語 | English

Chapter 4: Thermal Properties of Solids

Heat Capacity, Thermal Expansion, and the Grüneisen Parameter

📚 Introduction to Phonons ⏱️ 2.5 hours 📖 Chapter 4 of 5

Learning Objectives

By the end of this chapter, you will be able to:

1. Introduction: Phonons and Thermal Properties

In previous chapters, we learned that phonons are quantized lattice vibrations. But why should we care about these quantum mechanical objects? The answer lies in their profound influence on the macroscopic thermal properties of materials. Every time you heat a metal, observe thermal expansion, or measure thermal conductivity, you're witnessing the collective behavior of trillions of phonons.

This chapter bridges the gap between microscopic phonon physics and macroscopic thermal phenomena. We'll see how the distribution of phonon modes—characterized by the density of states we studied in Chapter 3— directly determines properties like heat capacity and thermal expansion.

Key Insight

The fundamental connection is simple: thermal energy in solids is stored primarily in phonons. When you add heat to a crystal, you're creating phonons. When the crystal expands with temperature, it's because anharmonic phonon interactions change the equilibrium lattice spacing.

2. Classical Theory: The Dulong-Petit Law

2.1 Historical Context

In 1819, French scientists Pierre Louis Dulong and Alexis Thérèse Petit made an empirical observation: at high temperatures, the molar heat capacity of many solid elements is approximately constant, around 25 J/(mol·K) or 3R, where R is the gas constant (8.314 J/(mol·K)).

2.2 Classical Derivation

From classical statistical mechanics, we can derive this result. Consider N atoms in a solid, each able to vibrate in three dimensions. Each degree of freedom has average energy kBT/2 (kinetic) + kBT/2 (potential) = kBT by the equipartition theorem.

Total energy for N atoms with 3N degrees of freedom:

$$U = 3Nk_BT$$

The heat capacity at constant volume is:

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = 3Nk_B = 3R \approx 25 \text{ J/(mol·K)}$$

where we used N = NA (Avogadro's number) for one mole.

Dulong-Petit Law

For a solid at high temperature: CV = 3R ≈ 25 J/(mol·K)

This is remarkably accurate for many elements at room temperature and above.

2.3 Limitations of the Classical Theory

However, the Dulong-Petit law fails dramatically in several important cases:

graph LR A[Classical Prediction] -->|Constant 3R| B[All Temperatures] C[Experimental Reality] -->|Varies with T| D[Temperature Dependent] E[Low T] -->|Quantum Effects| F[C ~ T³] G[High T] -->|Classical Limit| H[C → 3R] style A fill:#ffe6e6 style C fill:#e6ffe6
Figure 1: Comparison between classical prediction and experimental behavior of heat capacity

These failures pointed to a fundamental problem: classical physics cannot explain the thermal properties of solids. A quantum theory was needed.

3. Einstein Model of Heat Capacity

3.1 Einstein's Quantum Hypothesis (1907)

Albert Einstein made a revolutionary proposal: treat each atom as an independent quantum harmonic oscillator with a single characteristic frequency ωE. Unlike classical oscillators that can have any energy, quantum oscillators have discrete energy levels:

$$E_n = \hbar\omega_E\left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, 3, \ldots$$

The key quantum feature: oscillators at low temperature tend to stay in low energy states.

3.2 Derivation of Einstein Heat Capacity

Using Bose-Einstein statistics, the average number of phonons at temperature T is:

$$\langle n \rangle = \frac{1}{e^{\hbar\omega_E/k_BT} - 1}$$

The average energy per oscillator (excluding zero-point energy):

$$\langle E \rangle = \hbar\omega_E \langle n \rangle = \frac{\hbar\omega_E}{e^{\hbar\omega_E/k_BT} - 1}$$

For N atoms (3N oscillators), total energy:

$$U = 3N\frac{\hbar\omega_E}{e^{\hbar\omega_E/k_BT} - 1}$$

Heat capacity:

$$C_V^{\text{Einstein}} = \frac{\partial U}{\partial T} = 3Nk_B\left(\frac{\hbar\omega_E}{k_BT}\right)^2 \frac{e^{\hbar\omega_E/k_BT}}{\left(e^{\hbar\omega_E/k_BT} - 1\right)^2}$$

Defining the Einstein temperature ΘE = ℏωE/kB:

$$C_V^{\text{Einstein}} = 3R\left(\frac{\Theta_E}{T}\right)^2 \frac{e^{\Theta_E/T}}{\left(e^{\Theta_E/T} - 1\right)^2}$$

3.3 Behavior of Einstein Model

High Temperature Limit (T ≫ ΘE):

When T ≫ ΘE, eΘE/T ≈ 1 + ΘE/T, giving:

$$C_V^{\text{Einstein}} \approx 3R$$

✓ Recovers the classical Dulong-Petit law!

Low Temperature Limit (T ≪ ΘE):

$$C_V^{\text{Einstein}} \approx 3R\left(\frac{\Theta_E}{T}\right)^2 e^{-\Theta_E/T}$$

✓ Goes to zero as T → 0 (satisfies third law of thermodynamics)

✗ But decreases exponentially, not as T³ as observed experimentally

Einstein Temperature Values

Material ΘE (K) Comment
Lead (Pb) 88 Soft, heavy metal
Aluminum (Al) 240 Light metal
Copper (Cu) 240 Common metal
Diamond (C) 1860 Strong covalent bonds

4. Debye Model of Heat Capacity

4.1 Debye's Improvement (1912)

Peter Debye realized that Einstein's assumption of a single frequency was too simplistic. Real solids have a continuous spectrum of phonon frequencies, as we learned in Chapter 3. Debye proposed using the phonon density of states g(ω) in a more realistic model.

4.2 Debye Approximation

Debye made a crucial simplification: approximate the phonon DOS with:

$$g(\omega) = \begin{cases} \frac{9N}{\omega_D^3}\omega^2 & 0 \leq \omega \leq \omega_D \\ 0 & \omega > \omega_D \end{cases}$$

where ωD is the Debye cutoff frequency, chosen so that:

$$\int_0^{\omega_D} g(\omega) d\omega = 3N$$

(total of 3N modes for N atoms)

Physical Meaning

This approximation assumes all modes are acoustic-like with ω ∝ k up to a cutoff. It's exactly correct for the Debye model from Chapter 3, and a reasonable approximation for many real materials.

4.3 Debye Heat Capacity Formula

Total internal energy:

$$U = \int_0^{\omega_D} g(\omega) \hbar\omega \langle n(\omega) \rangle d\omega = \int_0^{\omega_D} \frac{9N\omega^2}{\omega_D^3} \frac{\hbar\omega}{e^{\hbar\omega/k_BT} - 1} d\omega$$

Defining the Debye temperature ΘD = ℏωD/kB and x = ℏω/(kBT):

$$U = 9Nk_BT\left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} \frac{x^3}{e^x - 1} dx$$

The heat capacity is:

$$C_V^{\text{Debye}} = 9R\left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

This integral defines the Debye function D(ΘD/T).

4.4 Low and High Temperature Limits

High Temperature (T ≫ ΘD):

$$C_V^{\text{Debye}} \to 3R$$

✓ Recovers Dulong-Petit law

Low Temperature (T ≪ ΘD):

When T ≪ ΘD, the upper limit of integration becomes ∞, and the integral equals 4π⁴/15:

$$C_V^{\text{Debye}} = \frac{12\pi^4}{5}R\left(\frac{T}{\Theta_D}\right)^3 = \frac{234R}{\Theta_D^3}T^3$$

Debye T³ Law

At low temperatures: CV ∝ T³

This matches experimental observations beautifully and is one of the great triumphs of quantum theory in solid-state physics!

4.5 Physical Origin of T³ Law

Why does heat capacity scale as T³ at low temperature? Two factors:

  1. Density of states: g(ω) ∝ ω² for acoustic phonons (3D Debye model)
  2. Thermal occupation: Only phonons with ℏω ≲ kBT are thermally excited. The number of such modes scales as (kBT)³

Result: CV ∝ (fraction of excited modes) × (energy per mode) ∝ T³ × T = T³

graph TD A[Low Temperature] --> B[Only low-ω phonons excited] B --> C[Number of modes ∝ ω³ ∝ T³] C --> D[Each mode energy ∝ T] D --> E[Total C_V ∝ T³] style A fill:#e6f3ff style E fill:#ffe6e6
Figure 2: Physical origin of the Debye T³ law

4.6 Debye Temperature Values

Debye Temperatures for Common Materials

Material ΘD (K) Type
Lead (Pb) 105 Soft metal
Gold (Au) 165 Noble metal
Silver (Ag) 225 Noble metal
Copper (Cu) 343 Transition metal
Aluminum (Al) 428 Light metal
Silicon (Si) 645 Semiconductor
Diamond (C) 2230 Covalent crystal

Trend: ΘD increases with bond strength and decreases with atomic mass

5. Comparison with Experimental Data

5.1 Heat Capacity Measurements

Experimental heat capacity measurements can be performed using calorimetry. The Debye model provides excellent agreement with experiment for most elemental solids, especially at low temperatures.

Key experimental observations:

5.2 Deviations from Debye Model

The Debye model is not perfect. Deviations occur due to:

  1. Electronic contribution: In metals, conduction electrons contribute Cel ∝ T at low temperature
  2. Optical phonons: Materials with multiple atoms per unit cell have optical modes not captured by simple Debye model
  3. Anharmonicity: At high T, anharmonic effects cause CV to exceed 3R slightly

Total Heat Capacity in Metals

For metals at low temperature:

$$C_V = \gamma T + \beta T^3$$

where γT is the electronic contribution and βT³ is the phonon (Debye) contribution.

6. Python Implementation: Heat Capacity Calculations

6.1 Einstein Model Code

import numpy as np
import matplotlib.pyplot as plt
from scipy import integrate

def einstein_heat_capacity(T, theta_E, R=8.314):
  """
  Calculate heat capacity using Einstein model.

  Parameters:
  -----------
  T : float or array
    Temperature in Kelvin
  theta_E : float
    Einstein temperature in Kelvin
  R : float
    Gas constant (default: 8.314 J/(mol·K))

  Returns:
  --------
  C_V : float or array
    Molar heat capacity in J/(mol·K)
  """
  x = theta_E / T
  # Avoid division by zero or overflow
  x = np.clip(x, 1e-10, 100)

  exp_x = np.exp(x)
  C_V = 3 * R * (x**2) * exp_x / (exp_x - 1)**2

  return C_V

# Example: Calculate for Copper (theta_E ≈ 240 K)
T_range = np.linspace(10, 500, 200)
C_einstein = einstein_heat_capacity(T_range, theta_E=240)

plt.figure(figsize=(10, 6))
plt.plot(T_range, C_einstein, label='Einstein Model (Θ_E=240 K)', linewidth=2)
plt.axhline(y=3*8.314, color='r', linestyle='--', label='Dulong-Petit (3R)')
plt.xlabel('Temperature (K)', fontsize=12)
plt.ylabel('C_V (J/(mol·K))', fontsize=12)
plt.title('Einstein Model Heat Capacity', fontsize=14)
plt.legend(fontsize=11)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

6.2 Debye Model Code

def debye_integrand(x):
  """Integrand for Debye heat capacity integral."""
  if x < 1e-10:
    return 0
  exp_x = np.exp(x)
  return (x**4 * exp_x) / (exp_x - 1)**2

def debye_heat_capacity(T, theta_D, R=8.314):
  """
  Calculate heat capacity using Debye model.

  Parameters:
  -----------
  T : float or array
    Temperature in Kelvin
  theta_D : float
    Debye temperature in Kelvin
  R : float
    Gas constant (default: 8.314 J/(mol·K))

  Returns:
  --------
  C_V : float or array
    Molar heat capacity in J/(mol·K)
  """
  # Handle array input
  T = np.atleast_1d(T)
  C_V = np.zeros_like(T, dtype=float)

  for i, temp in enumerate(T):
    if temp < 0.01:
      C_V[i] = 0
    elif temp > 10 * theta_D:
      # High temperature limit
      C_V[i] = 3 * R
    else:
      # Numerical integration
      x_max = theta_D / temp
      integral, _ = integrate.quad(debye_integrand, 0, x_max)
      C_V[i] = 9 * R * (temp / theta_D)**3 * integral

  return C_V if len(C_V) > 1 else C_V[0]

# Low-temperature T³ approximation
def debye_low_T_approx(T, theta_D, R=8.314):
  """
  Debye T³ law approximation for low temperatures.
  """
  return (12 * np.pi**4 / 5) * R * (T / theta_D)**3

# Example: Compare Debye model with T³ approximation
T_low = np.linspace(1, 100, 100)
theta_D_Cu = 343  # Copper

C_debye_full = debye_heat_capacity(T_low, theta_D_Cu)
C_debye_T3 = debye_low_T_approx(T_low, theta_D_Cu)

plt.figure(figsize=(10, 6))
plt.plot(T_low, C_debye_full, label='Full Debye Model', linewidth=2)
plt.plot(T_low, C_debye_T3, '--', label='T³ Approximation', linewidth=2)
plt.xlabel('Temperature (K)', fontsize=12)
plt.ylabel('C_V (J/(mol·K))', fontsize=12)
plt.title('Debye Model: Full vs T³ Approximation (Cu, Θ_D=343 K)', fontsize=14)
plt.legend(fontsize=11)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

6.3 Comparing All Three Models

def compare_heat_capacity_models(theta_E=240, theta_D=343, material='Copper'):
  """
  Compare Dulong-Petit, Einstein, and Debye models.
  """
  T_range = np.logspace(0, 2.7, 200)  # 1 to ~500 K, log scale

  # Calculate heat capacities
  C_dulong_petit = 3 * 8.314 * np.ones_like(T_range)
  C_einstein = einstein_heat_capacity(T_range, theta_E)
  C_debye = debye_heat_capacity(T_range, theta_D)

  # Plotting
  fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))

  # Linear scale plot
  ax1.plot(T_range, C_dulong_petit, 'k--', label='Dulong-Petit', linewidth=2)
  ax1.plot(T_range, C_einstein, label=f'Einstein (Θ_E={theta_E} K)', linewidth=2)
  ax1.plot(T_range, C_debye, label=f'Debye (Θ_D={theta_D} K)', linewidth=2)
  ax1.set_xlabel('Temperature (K)', fontsize=12)
  ax1.set_ylabel('C_V (J/(mol·K))', fontsize=12)
  ax1.set_title(f'Heat Capacity Models - {material}', fontsize=14)
  ax1.legend(fontsize=11)
  ax1.grid(True, alpha=0.3)
  ax1.set_ylim(0, 30)

  # Log-log plot (better for low T)
  ax2.loglog(T_range, C_einstein, label=f'Einstein (Θ_E={theta_E} K)', linewidth=2)
  ax2.loglog(T_range, C_debye, label=f'Debye (Θ_D={theta_D} K)', linewidth=2)

  # Add T³ reference line
  T_ref = np.logspace(0, 1.5, 50)
  C_ref = 0.1 * (T_ref)**3
  ax2.loglog(T_ref, C_ref, 'k:', label='T³ reference', linewidth=1.5)

  ax2.set_xlabel('Temperature (K)', fontsize=12)
  ax2.set_ylabel('C_V (J/(mol·K))', fontsize=12)
  ax2.set_title(f'Log-Log Plot - {material}', fontsize=14)
  ax2.legend(fontsize=11)
  ax2.grid(True, alpha=0.3, which='both')

  plt.tight_layout()
  plt.show()

  # Print comparison at specific temperatures
  print(f"\n{material} Heat Capacity Comparison:")
  print(f"{'T (K)':<10} {'Dulong-Petit':<15} {'Einstein':<15} {'Debye':<15}")
  print("-" * 55)
  for T in [10, 50, 100, 200, 300, 500]:
    C_dp = 3 * 8.314
    C_e = einstein_heat_capacity(T, theta_E)
    C_d = debye_heat_capacity(T, theta_D)
    print(f"{T:<10} {C_dp:<15.2f} {C_e:<15.2f} {C_d:<15.2f}")

# Run comparison
compare_heat_capacity_models(theta_E=240, theta_D=343, material='Copper')

Expected Output

Running this code will show:

7. Thermal Expansion

7.1 The Origin of Thermal Expansion

Why do materials expand when heated? Surprisingly, the harmonic approximation predicts zero thermal expansion! In a purely harmonic potential, the average atomic position doesn't change with temperature—atoms just vibrate more vigorously about the same equilibrium point.

Thermal expansion arises from anharmonicity in the interatomic potential. Real potentials are asymmetric: it's easier to pull atoms apart than to push them together.

graph TD A[Harmonic Potential] -->|Symmetric| B[No thermal expansion] C[Anharmonic Potential] -->|Asymmetric| D[Thermal expansion] D --> E[Easier to stretch than compress] E --> F[Average position shifts with T] style A fill:#ffe6e6 style C fill:#e6ffe6
Figure 3: Harmonic vs anharmonic potentials and thermal expansion

7.2 Anharmonic Potential

A realistic interatomic potential can be expanded as:

$$U(r) = U_0 + \frac{1}{2}k(r - r_0)^2 + g(r - r_0)^3 + \ldots$$

where:

The negative cubic term (g < 0) means the potential is softer (easier to stretch) at larger separations. As atoms vibrate with larger amplitude at higher T, they sample this asymmetric potential, leading to an increase in the average bond length.

7.3 Linear Thermal Expansion Coefficient

The linear thermal expansion coefficient is defined as:

$$\alpha_L = \frac{1}{L}\frac{dL}{dT}$$

where L is a linear dimension of the crystal.

For a 3D crystal, the volumetric thermal expansion coefficient is:

$$\alpha_V = \frac{1}{V}\frac{dV}{dT} \approx 3\alpha_L$$

Thermal expansion is directly related to phonon anharmonicity and can be quantified using the Grüneisen parameter.

8. The Grüneisen Parameter

8.1 Definition

The Grüneisen parameter γ quantifies how phonon frequencies change when the crystal volume changes. For a phonon mode with frequency ω:

$$\gamma_i = -\frac{d\ln\omega_i}{d\ln V} = -\frac{V}{\omega_i}\frac{\partial\omega_i}{\partial V}$$

The mode Grüneisen parameter tells us: if we compress the crystal (reduce V), how much does the phonon frequency increase?

8.2 Physical Interpretation

Positive γ (typical): Compression increases phonon frequencies (atoms vibrate faster when pushed closer together). Most materials have γ ≈ 1–3.

Negative γ (rare): Some modes in certain materials have frequencies that decrease upon compression. This can lead to negative thermal expansion!

8.3 Average Grüneisen Parameter

For thermodynamic applications, we use an average Grüneisen parameter:

$$\gamma = \frac{\sum_i \gamma_i C_{V,i}}{\sum_i C_{V,i}} = \frac{\sum_i \gamma_i C_{V,i}}{C_V}$$

where CV,i is the heat capacity contribution from mode i.

In the Debye approximation, assuming γ is constant for all modes:

$$\gamma_{\text{Debye}} \approx \frac{d\ln\omega_D}{d\ln V}$$

8.4 Grüneisen Relation

The Grüneisen parameter connects thermal expansion to heat capacity through the fundamental relation:

$$\alpha_V = \frac{\gamma C_V}{B_T V}$$

where:

Key Insight

The Grüneisen relation shows that thermal expansion is proportional to heat capacity. Both are determined by phonons, but thermal expansion requires anharmonicity while heat capacity does not.

8.5 Typical Values

Grüneisen Parameters for Common Materials

Material γ αL (10⁻⁶ K⁻¹) Comment
Diamond 0.8 1.1 Very low expansion
Silicon 0.5 2.6 Low expansion
Aluminum 2.2 23.1 Typical metal
Copper 2.0 16.5 Typical metal
Lead 2.7 28.9 Soft metal, high expansion
ZrW₂O₈ Negative -9.1 Negative thermal expansion!

8.6 Temperature Dependence of Thermal Expansion

Since αV ∝ CV, thermal expansion follows the same temperature dependence as heat capacity:

This is observed experimentally: thermal expansion coefficients decrease dramatically as T → 0.

9. Anharmonicity and Its Role

9.1 Beyond the Harmonic Approximation

The harmonic approximation, while incredibly useful, fails to explain several important phenomena:

9.2 Anharmonic Phonon Interactions

In anharmonic theory, phonons can interact with each other. The cubic anharmonic term allows processes like:

Conservation laws apply:

$$\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{G}$$ $$\omega_1 + \omega_2 = \omega_3$$

where G is a reciprocal lattice vector (for Umklapp processes).

9.3 Impact on Thermal Properties

Thermal Conductivity:

Phonon-phonon scattering from anharmonicity limits thermal conductivity. At high T:

$$\kappa \propto \frac{1}{T}$$

This is why diamond (very harmonic, weak anharmonicity) has extremely high thermal conductivity.

Thermal Expansion:

As discussed, anharmonicity is essential for thermal expansion through the Grüneisen mechanism.

Temperature-Dependent Phonon Frequencies:

Phonon frequencies shift with temperature due to anharmonic interactions:

$$\omega(T) = \omega_0 + \Delta\omega_{\text{anh}}(T)$$

This can be measured by temperature-dependent Raman spectroscopy or inelastic neutron scattering.

10. Summary

Key Takeaways

Connections to Other Chapters

This chapter completes the bridge from microscopic phonon theory (Chapters 1-3) to macroscopic thermal properties. In Chapter 5, we'll explore how these concepts apply to real materials and how experimental techniques measure phonon properties.

Exercises

Exercise 1: Dulong-Petit Law

Problem: Calculate the molar heat capacity predicted by the Dulong-Petit law in units of J/(mol·K) and cal/(mol·K). Compare with experimental values for copper at 300 K (CV ≈ 24.5 J/(mol·K)).

Hint: Use R = 8.314 J/(mol·K) and 1 cal = 4.184 J.

Exercise 2: Einstein Temperature

Problem: For aluminum with Einstein temperature ΘE = 240 K, calculate the molar heat capacity at:

Hint: Use the Einstein formula or the Python code provided.

Exercise 3: Debye T³ Law

Problem: Show that at very low temperatures (T ≪ ΘD), the Debye heat capacity reduces to:

$$C_V = \frac{12\pi^4}{5}R\left(\frac{T}{\Theta_D}\right)^3$$

Hint: Take the limit ΘD/T → ∞ in the Debye integral.

Exercise 4: Comparing Models

Problem: Use the Python code to plot Einstein and Debye heat capacities for diamond (ΘE ≈ 1860 K, ΘD ≈ 2230 K) from T = 10 K to T = 3000 K. Explain why both models give CV ≪ 3R at room temperature (300 K).

Exercise 5: Grüneisen Parameter

Problem: Copper has γ ≈ 2.0, bulk modulus BT ≈ 140 GPa, and molar volume Vm ≈ 7.1 × 10⁻⁶ m³/mol. Calculate the linear thermal expansion coefficient αL at room temperature (assume CV ≈ 3R).

Hint: Use the Grüneisen relation and αL ≈ αV/3.

Exercise 6: Programming Challenge

Problem: Modify the Python code to fit experimental heat capacity data. Given data points for a material, use curve fitting to determine the Debye temperature ΘD.

Extension: Try fitting with both Einstein and Debye models and compare which gives better agreement.

Exercise 7: Negative Thermal Expansion

Problem: Research the material ZrW₂O₈, which exhibits negative thermal expansion. Explain in terms of phonon modes and Grüneisen parameters how a material can contract when heated.

Hint: Consider transverse acoustic modes with negative Grüneisen parameters.