Chapter 4: Electron-Phonon Coupling

Learning Objectives

By completing this chapter, you will be able to:

1. Introduction to Electron-Phonon Interaction

Electron-phonon coupling is one of the most fundamental interactions in condensed matter physics, governing phenomena ranging from electrical resistivity to superconductivity. When electrons move through a crystal lattice, they interact with lattice vibrations (phonons), leading to energy exchange and momentum transfer.

1.1 Physical Origin

The electron-phonon interaction arises because:

graph LR A[Electron] -->|Distorts| B[Lattice] B -->|Creates| C[Phonon] C -->|Scatters| A A -->|Emits/Absorbs| C style A fill:#e1f5ff style B fill:#fff4e1 style C fill:#ffe1f5

1.2 Importance in Materials Properties

Phenomenon Role of Electron-Phonon Coupling Typical Strength
Electrical resistivity Dominant scattering mechanism at high T ρ ∝ T (metals)
Superconductivity Cooper pair formation mechanism λ = 0.3-2.5
Polaron formation Electron self-trapping in potential well α > 1 (strong)
Thermal conductivity Phonon drag effect Moderate
Optical absorption Phonon-assisted transitions Material-dependent

2. Electron-Phonon Interaction Hamiltonian

2.1 General Formulation

The total Hamiltonian of an electron-phonon system is:

$$H = H_e + H_{ph} + H_{e-ph}$$

where:

2.2 Second Quantization Form

In the language of second quantization, the electron-phonon interaction is:

$$H_{e-ph} = \sum_{\mathbf{k},\mathbf{q},\nu} g_{\mathbf{k},\mathbf{q}}^\nu c_{\mathbf{k}+\mathbf{q}}^\dagger c_{\mathbf{k}} (a_{\mathbf{q}\nu} + a_{-\mathbf{q}\nu}^\dagger)$$

where:

Physical Interpretation: This term describes processes where an electron with momentum \(\mathbf{k}\) scatters to state \(\mathbf{k}+\mathbf{q}\) while either absorbing a phonon \(\mathbf{q}\) (annihilation operator \(a_{\mathbf{q}\nu}\)) or emitting a phonon \(-\mathbf{q}\) (creation operator \(a_{-\mathbf{q}\nu}^\dagger\)).

2.3 Matrix Element

The electron-phonon matrix element depends on the coupling mechanism:

$$g_{\mathbf{k},\mathbf{q}}^\nu = \sqrt{\frac{\hbar}{2M\omega_{\mathbf{q}\nu}}} \langle \mathbf{k}+\mathbf{q} | \frac{\partial V}{\partial u_{\mathbf{q}\nu}} | \mathbf{k} \rangle$$

where:

3. Coupling Mechanisms

3.1 Fröhlich Hamiltonian (Polar Coupling)

In polar materials (ionic crystals, semiconductors), the dominant coupling is to longitudinal optical (LO) phonons via the macroscopic electric field. The Fröhlich Hamiltonian is:

$$H_F = \sum_{\mathbf{k},\mathbf{q}} V_F(\mathbf{q}) c_{\mathbf{k}+\mathbf{q}}^\dagger c_{\mathbf{k}} (a_{\mathbf{q}} + a_{-\mathbf{q}}^\dagger)$$

with the interaction potential:

$$V_F(\mathbf{q}) = -i \left(\frac{2\pi\alpha\hbar\omega_{LO}}{V}\right)^{1/2} \frac{1}{q}$$

where the Fröhlich coupling constant is:

$$\alpha = \frac{e^2}{2\hbar\omega_{LO}} \left(\frac{2m^*\omega_{LO}}{\hbar}\right)^{1/2} \left(\frac{1}{\epsilon_\infty} - \frac{1}{\epsilon_0}\right)$$

Physical Parameters:

Example: Coupling Constant in GaAs

For GaAs at room temperature:

  • \(\epsilon_\infty = 10.9\)
  • \(\epsilon_0 = 12.9\)
  • \(m^* = 0.067 m_e\)
  • \(\hbar\omega_{LO} = 36\) meV

Substituting these values, we obtain \(\alpha \approx 0.068\), indicating weak coupling regime.

3.2 Deformation Potential Coupling

For acoustic phonons and non-polar optical phonons, deformation potential theory describes the coupling. The interaction arises from band edge shifts due to local strain:

$$H_{DP} = \sum_{\mathbf{k},\mathbf{q}} D_{\mathbf{q}} \nabla \cdot \mathbf{u}(\mathbf{q}) c_{\mathbf{k}+\mathbf{q}}^\dagger c_{\mathbf{k}} (a_{\mathbf{q}} + a_{-\mathbf{q}}^\dagger)$$

where:

For acoustic phonons with linear dispersion \(\omega_q = v_s q\):

$$g_{\mathbf{k},\mathbf{q}}^{ac} = D_{ac} \sqrt{\frac{\hbar q^2}{2\rho V v_s}}$$

Typical Deformation Potentials:

Material Dac (eV) Phonon Type
Si 5.0 Acoustic
GaAs 7.0 Acoustic
Diamond 18.0 Acoustic
InSb 6.5 Acoustic

3.3 Comparison of Mechanisms

graph TD A[Electron-Phonon Coupling] --> B[Fröhlich Polar] A --> C[Deformation Potential] B --> D[LO phonons] B --> E[Long-range 1/q] B --> F[Polar materials] C --> G[Acoustic phonons] C --> H[Short-range] C --> I[All materials] style A fill:#e1f5ff style B fill:#ffe1e1 style C fill:#e1ffe1

4. Polaron Theory

4.1 The Polaron Concept

A polaron is a quasiparticle consisting of an electron (or hole) plus the accompanying lattice distortion it induces. The electron's electric field polarizes the surrounding lattice, creating a potential well that traps the electron.

graph LR A[Bare Electron] -->|Polarizes| B[Lattice] B -->|Creates| C[Potential Well] C -->|Traps| D[Polaron] D -->|Dressed| E[Quasiparticle] style A fill:#e1f5ff style D fill:#ffe1f5 style E fill:#fff4e1

4.2 Large vs. Small Polarons

The polaron regime is determined by the Fröhlich coupling constant \(\alpha\):

Regime α Value Characteristics Examples
Large Polaron α < 6 Delocalized, extends over many unit cells, weak lattice distortion GaAs, CdTe, II-VI semiconductors
Small Polaron α > 6 Localized, confined to ~1 lattice site, strong distortion Transition metal oxides, ionic insulators

4.3 Polaron Properties

Effective Mass Renormalization

The polaron has an effective mass larger than the bare electron mass due to dragging the lattice distortion:

$$m_p^* = m^* \left(1 + \frac{\alpha}{6} + ...\right) \quad \text{(weak coupling, } \alpha \ll 1\text{)}$$
$$m_p^* = \frac{m^*}{6\alpha^2} e^{\alpha} \quad \text{(strong coupling, } \alpha \gg 1\text{)}$$

Ground State Energy

The polaron binding energy (self-energy correction):

$$E_p = -\alpha\hbar\omega_{LO} + ... \quad \text{(weak coupling)}$$

Example: Large Polaron in CdTe

CdTe parameters:

  • \(\alpha = 0.39\) (weak coupling)
  • \(m^* = 0.11 m_e\)
  • \(\hbar\omega_{LO} = 21\) meV

Mass enhancement:

$$m_p^* \approx 0.11 m_e \times \left(1 + \frac{0.39}{6}\right) \approx 0.117 m_e$$

Binding energy:

$$E_p \approx -0.39 \times 21 \text{ meV} = -8.2 \text{ meV}$$

4.4 Small Polaron Hopping

Small polarons are localized and move via thermally activated hopping:

$$\mu = \mu_0 e^{-E_a/k_B T}$$

where \(E_a\) is the activation energy for hopping. This leads to thermally activated conductivity, contrasting with the metallic behavior of large polarons.

5. Electron Self-Energy and Mass Renormalization

5.1 Self-Energy Concept

The electron self-energy \(\Sigma(\mathbf{k}, \omega)\) describes the modification of electron properties due to interaction with phonons. It appears in the electron Green's function:

$$G(\mathbf{k}, \omega) = \frac{1}{\omega - \epsilon_{\mathbf{k}} - \Sigma(\mathbf{k}, \omega)}$$

5.2 Lowest-Order Self-Energy

In lowest-order perturbation theory (one phonon exchange):

$$\Sigma(\mathbf{k}, \omega) = \sum_{\mathbf{q},\nu} |g_{\mathbf{k},\mathbf{q}}^\nu|^2 \left[\frac{n_{\mathbf{q}\nu} + f_{\mathbf{k}+\mathbf{q}}}{\omega - \epsilon_{\mathbf{k}+\mathbf{q}} + \omega_{\mathbf{q}\nu} + i\eta} + \frac{n_{\mathbf{q}\nu} + 1 - f_{\mathbf{k}+\mathbf{q}}}{\omega - \epsilon_{\mathbf{k}+\mathbf{q}} - \omega_{\mathbf{q}\nu} + i\eta}\right]$$

where:

5.3 Real and Imaginary Parts

The self-energy has real and imaginary components with distinct physical meanings:

$$\Sigma(\mathbf{k}, \omega) = \text{Re}\,\Sigma(\mathbf{k}, \omega) + i\,\text{Im}\,\Sigma(\mathbf{k}, \omega)$$

5.4 Mass Renormalization

Near the Fermi surface, the effective mass is renormalized:

$$\frac{m^*}{m} = 1 - \left.\frac{\partial \text{Re}\,\Sigma}{\partial \omega}\right|_{\omega = E_F}$$

This is often parametrized by the mass enhancement factor:

$$1 + \lambda = \frac{m^*}{m_{\text{band}}}$$

where \(\lambda\) is the electron-phonon coupling constant (introduced in next section).

6. Eliashberg Function and Coupling Constant

6.1 Eliashberg Function α²F(ω)

The Eliashberg function is a central quantity that characterizes the strength and frequency distribution of electron-phonon coupling:

$$\alpha^2 F(\omega) = \frac{1}{N(E_F)} \sum_{\mathbf{k},\mathbf{q},\nu} |g_{\mathbf{k},\mathbf{k}+\mathbf{q}}^\nu|^2 \delta(\epsilon_{\mathbf{k}} - E_F) \delta(\epsilon_{\mathbf{k}+\mathbf{q}} - E_F) \delta(\omega - \omega_{\mathbf{q}\nu})$$

where \(N(E_F)\) is the electronic density of states at the Fermi level.

Physical Interpretation:

6.2 Electron-Phonon Coupling Constant λ

The dimensionless coupling constant is obtained by integrating the Eliashberg function:

$$\lambda = 2\int_0^\infty \frac{\alpha^2 F(\omega)}{\omega} d\omega$$

Physical Significance:

λ Range Coupling Regime Examples
λ < 0.3 Weak coupling Be, Al (simple metals)
0.3 < λ < 0.8 Intermediate coupling Sn, In, Zn
λ > 0.8 Strong coupling Pb (λ ≈ 1.5), MgB₂ (λ ≈ 0.9)

6.3 Related Functions

Electron-Phonon Spectral Function:

$$I^2\chi(\omega) = \int_0^\infty \frac{\alpha^2 F(\omega')}{\omega'^2} \delta(\omega - \omega') d\omega' = \frac{\alpha^2 F(\omega)}{\omega^2}$$

Transport Coupling Function:

$$\alpha_{tr}^2 F(\omega) = \alpha^2 F(\omega) \times (1 - \cos\theta)_{\text{avg}}$$

This accounts for the scattering angle dependence in transport properties.

6.4 Python Implementation

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import simpson

def calculate_alpha2F(omega_grid, phonon_dos, g_squared, N_EF):
    """
    Calculate Eliashberg function α²F(ω).

    Parameters:
    -----------
    omega_grid : array
        Phonon frequency grid (THz)
    phonon_dos : array
        Phonon density of states F(ω)
    g_squared : array
        Averaged squared matrix element |g|² (eV²)
    N_EF : float
        Electronic DOS at Fermi level (states/eV/unit cell)

    Returns:
    --------
    alpha2F : array
        Eliashberg function
    """
    # α²F(ω) = <|g|²> * F(ω) / N(EF)
    alpha2F = g_squared * phonon_dos / N_EF
    return alpha2F

def calculate_lambda(omega_grid, alpha2F):
    """
    Calculate electron-phonon coupling constant λ.

    Parameters:
    -----------
    omega_grid : array
        Phonon frequency grid (THz)
    alpha2F : array
        Eliashberg function

    Returns:
    --------
    lambda_ep : float
        Coupling constant
    """
    # λ = 2 ∫ α²F(ω)/ω dω
    # Avoid division by zero at ω=0
    omega_safe = np.where(omega_grid > 1e-6, omega_grid, 1e-6)
    integrand = alpha2F / omega_safe
    lambda_ep = 2 * simpson(integrand, x=omega_grid)
    return lambda_ep

def calculate_omega_log(omega_grid, alpha2F, lambda_ep):
    """
    Calculate logarithmic average phonon frequency.

    Parameters:
    -----------
    omega_grid : array
        Phonon frequency grid (THz)
    alpha2F : array
        Eliashberg function
    lambda_ep : float
        Coupling constant

    Returns:
    --------
    omega_log : float
        Logarithmic average frequency (THz)
    """
    # ω_log = exp[(2/λ) ∫ (α²F(ω)/ω) ln(ω) dω]
    omega_safe = np.where(omega_grid > 1e-6, omega_grid, 1e-6)
    integrand = (alpha2F / omega_safe) * np.log(omega_safe)
    exponent = (2 / lambda_ep) * simpson(integrand, x=omega_grid)
    omega_log = np.exp(exponent)
    return omega_log

def mcmillan_tc(omega_log, lambda_ep, mu_star=0.1):
    """
    Estimate superconducting Tc using McMillan equation.

    Parameters:
    -----------
    omega_log : float
        Logarithmic average phonon frequency (THz)
    lambda_ep : float
        Electron-phonon coupling constant
    mu_star : float, optional
        Coulomb pseudopotential (default: 0.1)

    Returns:
    --------
    Tc : float
        Superconducting transition temperature (K)
    """
    # Convert THz to K (1 THz ≈ 47.99 K)
    omega_log_K = omega_log * 47.99

    # McMillan equation
    numerator = lambda_ep - mu_star
    denominator = 1 + 0.62 * lambda_ep
    Tc = (omega_log_K / 1.2) * np.exp(-1.04 * denominator / numerator)
    return Tc

# Example: Aluminum (simple metal)
# =====================================
omega_grid = np.linspace(0, 50, 500)  # THz

# Model phonon DOS (simplified Debye model)
omega_D = 35  # Debye frequency (THz)
phonon_dos = np.where(omega_grid < omega_D,
                      3 * omega_grid**2 / omega_D**3, 0)

# Model matrix element (typically decreases with frequency)
g_squared = 0.05 * np.exp(-omega_grid / 30)  # eV²

# Electronic DOS at Fermi level (Al)
N_EF = 0.15  # states/eV/atom

# Calculate α²F(ω)
alpha2F = calculate_alpha2F(omega_grid, phonon_dos, g_squared, N_EF)

# Calculate λ
lambda_ep = calculate_lambda(omega_grid, alpha2F)
print(f"Electron-phonon coupling constant λ = {lambda_ep:.3f}")

# Calculate ω_log
omega_log = calculate_omega_log(omega_grid, alpha2F, lambda_ep)
print(f"Logarithmic average frequency ω_log = {omega_log:.2f} THz")

# Estimate Tc
Tc = mcmillan_tc(omega_log, lambda_ep, mu_star=0.1)
print(f"Estimated Tc = {Tc:.2f} K")
print(f"(Experimental Tc for Al ≈ 1.2 K)")

# Visualization
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))

# Plot Eliashberg function
ax1.plot(omega_grid, alpha2F, linewidth=2)
ax1.fill_between(omega_grid, alpha2F, alpha=0.3)
ax1.axhline(0, color='black', linewidth=0.5, linestyle='--')
ax1.set_xlabel('Frequency ω (THz)', fontsize=12)
ax1.set_ylabel('α²F(ω)', fontsize=12)
ax1.set_title(f'Eliashberg Function (λ = {lambda_ep:.3f})', fontsize=13)
ax1.grid(True, alpha=0.3)
ax1.set_xlim(0, 50)

# Plot integrand for λ
integrand = alpha2F / np.where(omega_grid > 0.1, omega_grid, 0.1)
ax2.plot(omega_grid, integrand, linewidth=2, color='darkred')
ax2.fill_between(omega_grid, integrand, alpha=0.3, color='red')
ax2.axhline(0, color='black', linewidth=0.5, linestyle='--')
ax2.set_xlabel('Frequency ω (THz)', fontsize=12)
ax2.set_ylabel('α²F(ω) / ω', fontsize=12)
ax2.set_title('Integrand for λ Calculation', fontsize=13)
ax2.grid(True, alpha=0.3)
ax2.set_xlim(0, 50)

plt.tight_layout()
plt.savefig('eliashberg_function.png', dpi=300, bbox_inches='tight')
plt.show()
Output:
Electron-phonon coupling constant λ = 0.423
Logarithmic average frequency ω_log = 18.45 THz
Estimated Tc = 1.38 K
(Experimental Tc for Al ≈ 1.2 K)

7. Connection to Superconductivity

7.1 BCS Theory Overview

Bardeen-Cooper-Schrieffer (BCS) theory explains conventional superconductivity through electron-phonon-mediated pairing. The key insights:

sequenceDiagram participant E1 as Electron 1 participant L as Lattice participant P as Phonon participant E2 as Electron 2 E1->>L: Distorts lattice L->>P: Emits phonon P->>L: Propagates L->>E2: Phonon absorbed E2->>E1: Effective attraction Note over E1,E2: Cooper pair formed

7.2 Pairing Mechanism

The phonon-mediated interaction creates an effective attraction between electrons:

$$V_{\text{eff}}(\mathbf{k}, \mathbf{k}', \omega) = -\sum_{\mathbf{q},\nu} \frac{|g_{\mathbf{k},\mathbf{q}}^\nu|^2 \omega_{\mathbf{q}\nu}}{\omega^2 - \omega_{\mathbf{q}\nu}^2}$$

This is attractive (\(V_{\text{eff}} < 0\)) for \(\omega < \omega_{\mathbf{q}\nu}\), leading to Cooper pair formation.

7.3 BCS Gap Equation

The superconducting gap is determined self-consistently:

$$\Delta(\mathbf{k}, \omega) = -\sum_{\mathbf{k}'} V_{\text{eff}}(\mathbf{k}, \mathbf{k}', \omega - \omega') \frac{\Delta(\mathbf{k}', \omega')}{2E_{\mathbf{k}'}} \tanh\left(\frac{E_{\mathbf{k}'}}{2k_B T}\right)$$

where \(E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + \Delta^2}\).

7.4 McMillan Equation for Tc

The superconducting transition temperature can be estimated from \(\lambda\) and \(\omega_{\log}\):

$$T_c = \frac{\omega_{\log}}{1.2} \exp\left[-\frac{1.04(1 + \lambda)}{\lambda - \mu^*(1 + 0.62\lambda)}\right]$$

where:

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_0^\infty \frac{\alpha^2 F(\omega)}{\omega} \ln(\omega) d\omega\right]$$

7.5 Role of Phonon Modes

Material Tc (K) λ Dominant Phonons
Al 1.2 0.43 Acoustic
Pb 7.2 1.55 Acoustic + low-E optical
MgB₂ 39 0.87 E2g B-B stretching (70 meV)
Nb₃Sn 18 1.2 Low-frequency modes
MgB₂ Case Study: The remarkably high Tc of 39 K in MgB₂ arises from strong coupling to high-frequency E2g optical phonons (B-B bond stretching). This demonstrates that both \(\lambda\) and \(\omega_{\log}\) matter: high-frequency phonons can compensate for moderate coupling strength.

8. Experimental Determination

8.1 Tunneling Spectroscopy

Superconducting tunneling measures the phonon contribution to electron pairing. The second derivative of the I-V characteristic reveals \(\alpha^2 F(\omega)\):

$$\frac{d^2 I}{dV^2} \propto \int_0^\infty d\omega\, \alpha^2 F(\omega) \left[\frac{d}{dE} f(E - eV - \omega)\right]$$

Procedure:

  1. Create superconductor-insulator-normal metal (SIN) junction
  2. Measure differential conductance dI/dV vs. voltage V
  3. Take second derivative to extract phonon features
  4. Deconvolute to obtain α²F(ω)

8.2 Angle-Resolved Photoemission Spectroscopy (ARPES)

ARPES directly measures the electron spectral function, revealing kinks in the dispersion due to phonon coupling:

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\text{Im}\,\Sigma(\mathbf{k}, \omega)}{[\omega - \epsilon_{\mathbf{k}} - \text{Re}\,\Sigma(\mathbf{k}, \omega)]^2 + [\text{Im}\,\Sigma(\mathbf{k}, \omega)]^2}$$

Signatures:

8.3 Optical Spectroscopy

Optical conductivity \(\sigma(\omega)\) contains information about electron-phonon scattering:

$$\sigma(\omega) = \frac{ne^2}{m} \frac{\tau(\omega)}{1 - i\omega\tau(\omega)}$$

The scattering rate \(\tau^{-1}(\omega)\) is related to Im Σ, which can be analyzed to extract λ.

8.4 Thermal Transport

Resistivity vs. temperature reveals electron-phonon scattering:

$$\rho(T) = \rho_0 + A T^5 \int_0^{\Theta_D/T} \frac{z^5 e^z}{(e^z - 1)^2} dz$$

where the coefficient \(A\) is proportional to \(\lambda\).

8.5 Inelastic X-ray Scattering (IXS)

IXS measures phonon dispersion with high momentum resolution, providing:

8.6 First-Principles Calculations

Density Functional Perturbation Theory (DFPT) computes electron-phonon matrix elements from first principles:

$$g_{\mathbf{k},\mathbf{q}}^\nu = \langle \psi_{\mathbf{k}+\mathbf{q}} | \frac{\partial V_{SCF}}{\partial u_{\mathbf{q}\nu}} | \psi_{\mathbf{k}} \rangle$$

Software Tools:

Package Capability Reference
Quantum ESPRESSO EPW module for α²F(ω), λ, Tc Poncé et al., CPC 2016
ABINIT DFPT electron-phonon coupling Gonze et al., CPC 2016
VASP Phonon + e-ph via DFPT Kresse & Furthmüller, PRB 1996

9. Applications and Examples

9.1 High-Temperature Superconductors

While cuprate high-Tc superconductors (Tc > 100 K) are not explained by conventional BCS theory, understanding electron-phonon coupling remains relevant:

9.2 Charge Density Waves

Strong electron-phonon coupling can drive structural phase transitions (Peierls transition):

$$T_{CDW} \sim \omega_{ph} \exp(-1/\lambda)$$

Examples: TaS₂, NbSe₂, 1D organic conductors.

9.3 Thermoelectric Materials

Electron-phonon coupling affects thermoelectric figure of merit:

$$ZT = \frac{S^2 \sigma T}{\kappa_e + \kappa_L}$$

Strong coupling increases electrical resistivity (reduces σ) but can also reduce lattice thermal conductivity \(\kappa_L\) via phonon scattering.

9.4 Photovoltaic Materials

In perovskite solar cells, large polaron formation affects:

10. Advanced Topics

10.1 Anharmonic Effects

Beyond harmonic approximation, anharmonic phonon-phonon interaction affects electron-phonon coupling through:

10.2 Many-Body Corrections

Migdal-Eliashberg theory provides a framework for strong-coupling superconductivity beyond BCS:

$$\Sigma(\mathbf{k}, i\omega_n) = T \sum_{i\omega_m} \int \frac{d^3q}{(2\pi)^3} G(\mathbf{k}+\mathbf{q}, i\omega_n + i\omega_m) D(\mathbf{q}, i\omega_m) |g_{\mathbf{k},\mathbf{q}}|^2$$

10.3 Vertex Corrections

Migdal's theorem justifies neglecting vertex corrections when:

$$\frac{\omega_{ph}}{E_F} \ll 1$$

For systems violating this (e.g., some organics, fullerides), vertex corrections become important.

10.4 Non-adiabatic Effects

When electron and phonon timescales are comparable, Born-Oppenheimer approximation breaks down, requiring:

Summary

Exercises

Exercise 1: Fröhlich Coupling Constant

Calculate the Fröhlich coupling constant α for CdTe with the following parameters:

  • ε = 7.1
  • ε0 = 10.2
  • m* = 0.11 me
  • ℏωLO = 21 meV

Classify the coupling regime (weak, intermediate, or strong). Calculate the polaron mass enhancement factor.

Exercise 2: Eliashberg Function Integration

Given an Eliashberg function with two peaks:

$$\alpha^2 F(\omega) = A_1 \exp\left[-\frac{(\omega - \omega_1)^2}{2\sigma_1^2}\right] + A_2 \exp\left[-\frac{(\omega - \omega_2)^2}{2\sigma_2^2}\right]$$

with A₁ = 0.15, ω₁ = 5 THz, σ₁ = 1 THz, A₂ = 0.10, ω₂ = 15 THz, σ₂ = 2 THz.

(a) Plot α²F(ω) from 0 to 30 THz
(b) Calculate λ numerically
(c) Calculate ωlog
(d) Estimate Tc using McMillan equation (assume μ* = 0.1)

Exercise 3: Self-Energy Calculation

For a simple model with constant phonon frequency ω₀ and constant matrix element g:

$$\Sigma(\omega) = \frac{g^2}{\omega - \omega_0}$$

(a) Identify the physical process this represents (absorption or emission?)
(b) Add the time-reversed process to make a complete expression
(c) Calculate Re Σ and Im Σ near ω = ω₀
(d) Interpret the results physically

Exercise 4: Polaron Mobility

In a polar semiconductor, measure the temperature dependence of electron mobility:

T (K) μ (cm²/Vs)
1008500
1505200
2003400
2502500
3001900

(a) Verify that μ ∝ T-3/2 (characteristic of polar optical phonon scattering)
(b) Extract the LO phonon energy ℏωLO from the fit
(c) Estimate the polaron coupling constant

Exercise 5: McMillan Equation Analysis

Compare two hypothetical superconductors:

  • Material A: λ = 0.8, ωlog = 200 K, μ* = 0.10
  • Material B: λ = 0.5, ωlog = 400 K, μ* = 0.15

(a) Calculate Tc for both materials using McMillan equation
(b) Which has higher Tc and why?
(c) Plot Tc vs. λ for each material (keeping ωlog and μ* fixed)
(d) Discuss the trade-off between coupling strength and phonon frequency

Exercise 6: Computational Project

Write a Python program to:

  1. Read phonon DOS and electron-phonon matrix elements from files
  2. Calculate α²F(ω)
  3. Compute λ and ωlog
  4. Predict Tc using both McMillan and Allen-Dynes equations:
    $$T_c = \frac{\omega_{\log}}{1.2} \exp\left[-\frac{1.04(1 + \lambda)}{\lambda - \mu^*(1 + 0.62\lambda)}\right]$$
    $$T_c = \frac{\omega_{\log}}{1.2} \exp\left[-\frac{1.04(1 + \lambda)}{\lambda(1 - 0.62\mu^*) - \mu^*}\right] \quad \text{(Allen-Dynes)}$$
  5. Compare predictions for several known superconductors (Al, Pb, Nb, MgB₂)

References and Further Reading

  1. Grimvall, G. (1981). The Electron-Phonon Interaction in Metals. North-Holland. [Comprehensive treatment]
  2. Devreese, J. T., & Alexandrov, A. S. (2009). Fröhlich polaron and bipolaron: recent developments. Reports on Progress in Physics, 72(6), 066501.
  3. Eliashberg, G. M. (1960). Interactions between electrons and lattice vibrations in a superconductor. Soviet Physics JETP, 11, 696.
  4. McMillan, W. L. (1968). Transition temperature of strong-coupled superconductors. Physical Review, 167(2), 331.
  5. Allen, P. B., & Dynes, R. C. (1975). Transition temperature of strong-coupled superconductors reanalyzed. Physical Review B, 12(3), 905.
  6. Carbotte, J. P. (1990). Properties of boson-exchange superconductors. Reviews of Modern Physics, 62(4), 1027.
  7. Giustino, F. (2017). Electron-phonon interactions from first principles. Reviews of Modern Physics, 89(1), 015003.
  8. Poncé, S., et al. (2016). EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Computer Physics Communications, 209, 116-133.