This chapter covers Electrical and Magnetic Properties. You will learn essential concepts and techniques.
What You Will Learn in This Chapter
Learning Objectives (3 Levels)
Basic Level
- Explain the mechanism of electrical conduction using the Drude model
- Understand the relationship between Hall effect and carrier density/mobility
- Explain the differences between ferromagnetism, antiferromagnetism, and paramagnetism
Intermediate Level
- Calculate electrical conductivity from band structure
- Understand and calculate the relationship between magnetic moment and spin density
- Explain the impact of spin-orbit interaction on magnetism
Advanced Level
- Quantitatively predict electrical and magnetic properties from DFT calculation results
- Understand the basic mechanism of superconductivity (BCS theory)
- Compare experimental data with DFT calculations to evaluate functional validity
Classical Theory of Electrical Conduction: Drude Model
Free Electron Approximation
This is the simplest model that treats valence electrons in metals as "freely moving particles." Electrons move freely through the lattice of atomic nuclei, and scattering occurs due to lattice vibrations (phonons) and impurities.
Basic Equations of Drude Model
Equation of motion for electrons in an electric field $\mathbf{E}$:
$$ m^* \frac{d\mathbf{v}}{dt} = -e\mathbf{E} - \frac{m^*\mathbf{v}}{\tau} $$- $m^*$: effective mass of the electron
- $\mathbf{v}$: drift velocity
- $\tau$: relaxation time (average time until collision)
- $-e$: electron charge
In steady state ($d\mathbf{v}/dt = 0$):
$$ \mathbf{v} = -\frac{e\tau}{m^*}\mathbf{E} $$Electrical Conductivity
Current density $\mathbf{J}$ is:
$$ \mathbf{J} = -ne\mathbf{v} = \frac{ne^2\tau}{m^*}\mathbf{E} = \sigma \mathbf{E} $$Therefore, electrical conductivity is:
$$ \sigma = \frac{ne^2\tau}{m^*} $$- $n$: carrier density [m⁻³]
- $e$: electron charge ($1.602 \times 10^{-19}$ C)
Relationship with mobility $\mu$:
$$ \mu = \frac{e\tau}{m^*}, \quad \sigma = ne\mu $$Typical Values (Room Temperature)
| Material | Electrical Conductivity [S/m] | Carrier Density [m⁻³] | Mobility [cm²/Vs] |
|---|---|---|---|
| Cu (copper) | 5.96 × 10⁷ | 8.5 × 10²⁸ | 43 |
| Si (n-type) | 10³ - 10⁵ | 10²¹ - 10²³ | 1400 |
| GaAs (n-type) | 10³ - 10⁶ | 10²¹ - 10²³ | 8500 |
Drude Model Simulation
# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0
import numpy as np
import matplotlib.pyplot as plt
# Physical constants
e = 1.602e-19 # Electron charge [C]
m_e = 9.109e-31 # Electron mass [kg]
def calculate_conductivity(n, tau, m_star=1.0):
"""
Calculate electrical conductivity
Parameters:
-----------
n : float
Carrier density [m^-3]
tau : float
Relaxation time [s]
m_star : float
Effective mass (in units of electron mass)
Returns:
--------
sigma : float
Electrical conductivity [S/m]
mu : float
Mobility [cm^2/Vs]
"""
m_eff = m_star * m_e
sigma = n * e**2 * tau / m_eff # Conductivity [S/m]
mu = e * tau / m_eff * 1e4 # Mobility [cm^2/Vs]
return sigma, mu
# Typical metal (Cu)
n_Cu = 8.5e28 # [m^-3]
tau_Cu = 2.7e-14 # [s]
sigma_Cu, mu_Cu = calculate_conductivity(n_Cu, tau_Cu, m_star=1.0)
print("=== Electrical Properties of Copper (Cu) ===")
print(f"Carrier density: {n_Cu:.2e} m^-3")
print(f"Relaxation time: {tau_Cu:.2e} s")
print(f"Electrical conductivity: {sigma_Cu:.2e} S/m")
print(f"Mobility: {mu_Cu:.1f} cm^2/Vs")
# Mobility and temperature dependence for semiconductor (Si n-type)
temperatures = np.linspace(100, 500, 50) # [K]
# Temperature dependence of mobility (simplified model: μ ∝ T^-3/2)
mu_Si_ref = 1400 # [cm^2/Vs] at 300K
T_ref = 300
mu_Si = mu_Si_ref * (temperatures / T_ref)**(-1.5)
plt.figure(figsize=(10, 6))
plt.plot(temperatures, mu_Si, linewidth=2, color='#f093fb')
plt.axhline(y=1400, color='red', linestyle='--', label='Room temperature value (300K)')
plt.xlabel('Temperature [K]', fontsize=12)
plt.ylabel('Mobility [cm²/Vs]', fontsize=12)
plt.title('Temperature Dependence of Mobility in Si n-type Semiconductor', fontsize=14, fontweight='bold')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('mobility_temperature.png', dpi=300, bbox_inches='tight')
plt.show()
Hall Effect and Carrier Measurement
Principle of Hall Effect
When a magnetic field perpendicular to a current-carrying conductor is applied, the Lorentz force causes charge separation, resulting in a potential difference (Hall voltage) in the transverse direction.
F = -e v × B] C --> D[Charge Separation] D --> E[Hall Voltage VH] style A fill:#f093fb,stroke:#f5576c,stroke-width:2px,color:#fff style E fill:#d4edda,stroke:#28a745,stroke-width:2px
Hall Coefficient
The Hall electric field $E_y$ is:
$$ E_y = R_H J_x B_z $$The Hall coefficient $R_H$ is:
$$ R_H = \frac{1}{ne} $$- For holes: $R_H > 0$
- For electrons: $R_H < 0$
Carrier Density Measurement:
$$ n = \frac{1}{|R_H| e} $$Mobility Measurement:
$$ \mu = |R_H| \sigma $$Hall Effect Measurement Simulation
# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0
import numpy as np
import matplotlib.pyplot as plt
def hall_effect_simulation(n, mu, B_range, thickness=1e-3):
"""
Simulate Hall effect
Parameters:
-----------
n : float
Carrier density [m^-3]
mu : float
Mobility [m^2/Vs]
B_range : array
Magnetic field range [T]
thickness : float
Sample thickness [m]
"""
e = 1.602e-19
# Hall coefficient
R_H = 1 / (n * e) # [m^3/C]
# Assume constant current density
J = 1e6 # [A/m^2]
# Hall voltage
V_H = R_H * J * B_range * thickness # [V]
# Hall resistance
R_Hall = V_H / (J * thickness**2) # [Ω]
return V_H, R_Hall, R_H
# Example of Si n-type semiconductor
n_Si = 1e22 # [m^-3]
mu_Si = 0.14 # [m^2/Vs] = 1400 cm^2/Vs
B_range = np.linspace(-2, 2, 100) # [T]
V_H, R_Hall, R_H = hall_effect_simulation(n_Si, mu_Si, B_range)
# Plot
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
# Hall voltage vs magnetic field
ax1.plot(B_range, V_H * 1e3, linewidth=2, color='#f093fb')
ax1.axhline(y=0, color='black', linestyle='-', linewidth=0.5)
ax1.axvline(x=0, color='black', linestyle='-', linewidth=0.5)
ax1.set_xlabel('Magnetic Field [T]', fontsize=12)
ax1.set_ylabel('Hall Voltage [mV]', fontsize=12)
ax1.set_title('Magnetic Field Dependence of Hall Voltage', fontsize=14, fontweight='bold')
ax1.grid(True, alpha=0.3)
# Hall resistance vs magnetic field
ax2.plot(B_range, R_Hall, linewidth=2, color='#f5576c')
ax2.axhline(y=0, color='black', linestyle='-', linewidth=0.5)
ax2.set_xlabel('Magnetic Field [T]', fontsize=12)
ax2.set_ylabel('Hall Resistance [Ω]', fontsize=12)
ax2.set_title('Magnetic Field Dependence of Hall Resistance', fontsize=14, fontweight='bold')
ax2.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('hall_effect.png', dpi=300, bbox_inches='tight')
plt.show()
print("=== Hall Effect Measurement Results ===")
print(f"Carrier density: {n_Si:.2e} m^-3")
print(f"Hall coefficient: {R_H:.2e} m^3/C")
print(f"Hall coefficient sign: {'Negative (electrons)' if R_H < 0 else 'Positive (holes)'}")
print(f"Hall voltage at 1T magnetic field: {V_H[np.argmin(np.abs(B_range - 1.0))] * 1e3:.3f} mV")
Fundamentals of Magnetism
Origins of Magnetic Moment
The magnetic moment of atoms and molecules has two contributions:
- Orbital magnetic moment: due to electron orbital motion $$\mathbf{\mu}_L = -\frac{e}{2m_e}\mathbf{L}$$
- Spin magnetic moment: due to electron intrinsic angular momentum (spin) $$\mathbf{\mu}_S = -g_s \frac{e}{2m_e}\mathbf{S}$$
Here, $g_s pprox 2$ is the g-factor.Bohr magneton $\mu_B$:
$$ \mu_B = \frac{e\hbar}{2m_e} = 9.274 \times 10^{-24} \, \text{J/T} $$Magnetization and Susceptibility
$M$ 、 :
$$ \mathbf{M} = \frac{1}{V}\sum_i \mathbf{\mu}_i $$susceptibility$\chi$ :
$$ \mathbf{M} = \chi \mathbf{H} $$- $\chi > 0$: paramagnetism (magnetization in field direction)
- $\chi < 0$: diamagnetism (magnetization opposite to field)
Classification of Magnetism
| Magnetism | susceptibility$\chi$ | Characteristics | Representative Examples |
|---|---|---|---|
| Diamagnetism | $\chi < 0$() | Repels external field, no temperature dependence | Cu, Au, Si |
| Paramagnetism | $\chi > 0$() | 、Curie($\chi \propto 1/T$) | Al, Pt, O₂ |
| Ferromagnetism | $\chi \gg 1$ | 、CurieTemperature$T_C$ordered below | Fe, Co, Ni |
| AntiFerromagnetism | $\chi > 0$() | Anti、NéelTemperature$T_N$ordered below | MnO, Cr |
| Ferrimagnetism | $\chi > 0$() | Antiparallel but different magnitudes → net magnetization | Fe₃O₄(magnetite) |
Ferromagnetism (Weiss)
Ferromagnetism 、「」。Weiss 、「」$H_{\text{eff}}$:
$$ H_{\text{eff}} = H + \lambda M $$$\lambda$ Weissconstant(constant)。、CurieTemperature$T_C$:
$$ T_C = \frac{C\lambda}{N_A k_B} $$$T < T_C$ 。
Prediction of Magnetism by DFT Calculations
Spin-Polarized DFT Calculations
In DFT calculations of magnetic materials, spin-up (↑) and spin-down (↓) electrons are treated separately (spin-polarized calculation).
Electron density is decomposed into spin components:
$$ n(\mathbf{r}) = n_\uparrow(\mathbf{r}) + n_\downarrow(\mathbf{r}) $$Spin density (magnetization density):
$$ m(\mathbf{r}) = n_\uparrow(\mathbf{r}) - n_\downarrow(\mathbf{r}) $$Magnetic moment:
$$ \mu = \mu_B \int m(\mathbf{r}) d\mathbf{r} $$Spin-Polarized Calculation Settings in VASP
# INCAR file to set up spin-polarized calculation in VASP
def create_magnetic_incar(system_name='Fe', initial_magmom=2.0):
"""
Generate VASP INCAR file for magnetic materials
Parameters:
-----------
system_name : str
System name
initial_magmom : float
Initial magnetic moment [μB/atom]
"""
incar_content = f"""SYSTEM = {system_name} magnetic calculation
# Electronic structure
ENCUT = 400
PREC = Accurate
LREAL = Auto
# Exchange-correlation
GGA = PE
# SCF convergence
EDIFF = 1E-6
NELM = 100
# Smearing (for metals)
ISMEAR = 1 # Methfessel-Paxton
SIGMA = 0.2
# Spin-polarized calculation
ISPIN = 2 # Enable spin polarization
MAGMOM = {initial_magmom} # Initial magnetic moment [μB]
# Magnetic moment output
LORBIT = 11 # Atom- and orbital-projected magnetic moments
# Parallelization
NCORE = 4
"""
return incar_content
# FerromagnetismFe(BCC) calculation
incar_fe = create_magnetic_incar('Fe BCC', initial_magmom=2.2)
print("=== Fe Ferromagnetismcalculation INCAR ===")
print(incar_fe)
# AntiFerromagnetismMnO(rocksalt) calculation
# Set initial spins of Mn atoms alternately
incar_mno = """SYSTEM = MnO antiferromagnetic
ENCUT = 450
PREC = Accurate
GGA = PE
EDIFF = 1E-6
ISMEAR = 0
SIGMA = 0.05
# Spin-polarized calculation
ISPIN = 2
MAGMOM = 4.0 -4.0 4.0 -4.0 0 0 0 0 # Mn4()+ O4(Magnetism)
LORBIT = 11
NCORE = 4
"""
print("\n=== MnO AntiFerromagnetismcalculation INCAR ===")
print(incar_mno)
Visualization of Spin Density
# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Generate dummy spin density data (in practice, read from VASP output)
def generate_spin_density_data():
"""
Simulate spin density around Fe atom
"""
x = np.linspace(-3, 3, 50)
y = np.linspace(-3, 3, 50)
X, Y = np.meshgrid(x, y)
# Approximate spin density with Gaussian distribution
spin_density = 2.2 * np.exp(-(X**2 + Y**2) / 2)
return X, Y, spin_density
X, Y, spin_density = generate_spin_density_data()
# 2D plot
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
# Contour plot
contour = ax1.contourf(X, Y, spin_density, levels=20, cmap='RdBu_r')
ax1.contour(X, Y, spin_density, levels=10, colors='black', linewidths=0.5, alpha=0.3)
fig.colorbar(contour, ax=ax1, label='Spin Density [μB/ų]')
ax1.set_xlabel('x [Å]', fontsize=12)
ax1.set_ylabel('y [Å]', fontsize=12)
ax1.set_title('FeAround Fe AtomSpin Density(2D)', fontsize=14, fontweight='bold')
ax1.set_aspect('equal')
# 3D surface
from matplotlib import cm
ax2 = fig.add_subplot(122, projection='3d')
surf = ax2.plot_surface(X, Y, spin_density, cmap=cm.coolwarm, alpha=0.8)
ax2.set_xlabel('x [Å]', fontsize=10)
ax2.set_ylabel('y [Å]', fontsize=10)
ax2.set_zlabel('Spin Density [μB/ų]', fontsize=10)
ax2.set_title('FeAround Fe AtomSpin Density(3D)', fontsize=14, fontweight='bold')
plt.tight_layout()
plt.savefig('spin_density.png', dpi=300, bbox_inches='tight')
plt.show()
# Calculate magnetic moment (numerical integration)
dx = X[0, 1] - X[0, 0]
dy = Y[1, 0] - Y[0, 0]
total_moment = np.sum(spin_density) * dx * dy
print(f"\n=== Magnetic Moment Calculation Results ===")
print(f"Integrated magnetic moment: {total_moment:.2f} μB")
print(f"(Experimental Fe: approximately 2.2 μB)")
Spin-Orbit Interaction (SOC)
Origin of SOC
$\mathbf{S}$$\mathbf{L}$。:
$$ H_{\text{SOC}} = \lambda \mathbf{L} \cdot \mathbf{S} $$$\lambda$ constant、$Z$ ($\lambda \propto Z^4$)。
Physical Effects of SOC
- Magnetic anisotropy: Energy depends on magnetization direction
- Magnetic circular dichroism (MCD): Difference in absorption for circularly polarized light
- Rashba effect: Spin splitting in systems with broken inversion symmetry
- Topological insulators: Band inversion by SOC
SOC Calculation Settings in VASP
# VASP calculation settings including spin-orbit interaction
def create_soc_incar(system_name='Pt', include_soc=True):
"""
Generate INCAR file for SOC calculations
Parameters:
-----------
system_name : str
System name
include_soc : bool
Whether to enable SOC
"""
incar_content = f"""SYSTEM = {system_name} with SOC
ENCUT = 400
PREC = Accurate
GGA = PE
EDIFF = 1E-7 # High precision required for SOC calculations
ISMEAR = 1
SIGMA = 0.2
# + SOC
ISPIN = 2
"""
if include_soc:
incar_content += """LSORBIT = .TRUE. # Enable spin-orbit interaction
LNONCOLLINEAR = .TRUE. # Magnetism( )
GGA_COMPAT = .FALSE. # Recommended for SOC calculations
"""
incar_content += """
LORBIT = 11
NCORE = 4
"""
return incar_content
# Pt (heavy element, SOC important)
incar_pt_soc = create_soc_incar('Pt bulk', include_soc=True)
print("=== Pt + SOC calculation INCAR ===")
print(incar_pt_soc)
# Without SOC for comparison
incar_pt_no_soc = create_soc_incar('Pt bulk', include_soc=False)
print("\n=== Pt (Without SOC) calculation INCAR ===")
print(incar_pt_no_soc)
Band Splitting by SOC
# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0
import numpy as np
import matplotlib.pyplot as plt
# Band structure simulation with and without SOC
def simulate_soc_band_splitting():
"""
Band Splitting by SOC
"""
k = np.linspace(-np.pi, np.pi, 200)
# Without SOC (degenerate)
E_no_soc = np.cos(k) + 0.5 * np.cos(2*k)
# With SOC (split)
lambda_soc = 0.3 # SOC strength
E_soc_up = E_no_soc + lambda_soc * np.abs(np.sin(k))
E_soc_down = E_no_soc - lambda_soc * np.abs(np.sin(k))
return k, E_no_soc, E_soc_up, E_soc_down
k, E_no_soc, E_soc_up, E_soc_down = simulate_soc_band_splitting()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
# Without SOC
ax1.plot(k/np.pi, E_no_soc, linewidth=2, color='blue', label='Degenerate band')
ax1.axhline(y=0, color='black', linestyle='--', linewidth=0.5)
ax1.set_xlabel('k [π/a]', fontsize=12)
ax1.set_ylabel('Energy [eV]', fontsize=12)
ax1.set_title('Without SOC', fontsize=14, fontweight='bold')
ax1.legend()
ax1.grid(True, alpha=0.3)
# With SOC
ax2.plot(k/np.pi, E_soc_up, linewidth=2, color='red', label='Spin-up')
ax2.plot(k/np.pi, E_soc_down, linewidth=2, color='blue', label='Spin-down')
ax2.axhline(y=0, color='black', linestyle='--', linewidth=0.5)
ax2.set_xlabel('k [π/a]', fontsize=12)
ax2.set_ylabel('Energy [eV]', fontsize=12)
ax2.set_title('With SOC', fontsize=14, fontweight='bold')
ax2.legend()
ax2.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('soc_band_splitting.png', dpi=300, bbox_inches='tight')
plt.show()
# Splitting at k=π/2Energy
idx = len(k) // 4
splitting = E_soc_up[idx] - E_soc_down[idx]
print(f"\n=== Band Splitting by SOC ===")
print(f"Splitting at k=π/2: {splitting:.3f} eV")
Fundamentals of Superconductivity
Superconducting Phenomenon
criticalTemperature$T_c$、。1911、Kamerlingh OnnesHg。
BCS Theory (1957)
Microscopic theory by Bardeen, Cooper, and Schrieffer. Electrons form "Cooper pairs" through attractive interaction mediated by phonons (lattice vibrations).
Cooper Pair Formation Mechanism
- Electron A distorts the lattice (attracts positive charge)
- Distorted lattice attracts electron B
- Effectively, attractive interaction acts between electrons A-B (phonon-mediated)
- Anti・Anti ($\mathbf{k}\uparrow, -\mathbf{k}\downarrow$)
Superconducting gap:
$$ \Delta(T) = \Delta_0 \tanh\left(1.74\sqrt{\frac{T_c - T}{T}}\right) $$$T=0$K at:
$$ \Delta_0 \approx 1.76 k_B T_c $$Representative Superconductors
| Material | $T_c$ [K] | Type | Notes |
|---|---|---|---|
| Hg() | 4.15 | Type I | First superconductor discovered |
| Nb₃Sn | 18.3 | Type II | A15 structure, used in magnets |
| YBa₂Cu₃O₇(YBCO) | 92 | High-Tc | Cuprate, above liquid nitrogen temperature |
| MgB₂ | 39 | Type II | Simple structure, explained by BCS theory |
| H₃S(high pressure) | 203 | High-Tc | 150 GPa、$T_c$ |
Temperature Dependence of Superconducting Gap
# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0
import numpy as np
import matplotlib.pyplot as plt
def superconducting_gap(T, Tc):
"""
BCSTemperature Dependence of Superconducting Gap
Parameters:
-----------
T : array
Temperature [K]
Tc : float
criticalTemperature [K]
Returns:
--------
Delta : array
Superconducting gap [meV]
"""
k_B = 8.617e-5 # Boltzmann constant [eV/K]
# BCS theory approximation formula
Delta_0 = 1.76 * k_B * Tc * 1000 # [meV]
Delta = np.zeros_like(T)
mask = T < Tc
Delta[mask] = Delta_0 * np.tanh(1.74 * np.sqrt((Tc - T[mask]) / T[mask]))
return Delta
# Tc for various superconductors
materials = {
'Al': 1.2,
'Nb': 9.2,
'MgB₂': 39,
'YBCO': 92
}
T = np.linspace(0.1, 100, 500)
plt.figure(figsize=(10, 6))
for name, Tc in materials.items():
Delta = superconducting_gap(T, Tc)
plt.plot(T, Delta, linewidth=2, label=f'{name} ($T_c$={Tc}K)')
plt.xlabel('Temperature [K]', fontsize=12)
plt.ylabel('Superconducting gap Δ(T) [meV]', fontsize=12)
plt.title('Temperature Dependence of Superconducting Gap', fontsize=14, fontweight='bold')
plt.legend()
plt.grid(True, alpha=0.3)
plt.xlim(0, 100)
plt.tight_layout()
plt.savefig('superconducting_gap.png', dpi=300, bbox_inches='tight')
plt.show()
# Verification of Δ_0 / k_B T_c (1.76 in BCS theory)
for name, Tc in materials.items():
k_B = 8.617e-5
Delta_0 = 1.76 * k_B * Tc * 1000
ratio = Delta_0 / (k_B * Tc * 1000)
print(f"{name}: Δ₀/(kB·Tc) = {ratio:.2f}")
Summary
What We Learned in This Chapter
Electrical Properties
- Drude:$\sigma = ne^2\tau/m^*$
- Hall effect can measure carrier density and mobility
- Temperature($\mu \propto T^{-3/2}$)
Magnetic Properties
- Magnetism Diamagnetism、Paramagnetism、Ferromagnetism、AntiFerromagnetism、Ferrimagnetism
- Spin-Polarized DFT Calculations(ISPIN=2)
- Spin-Orbit Interaction (SOC) 、
Superconductivity
- BCS theory: electrons form Cooper pairs, resulting in zero resistance
- Superconducting gap:$\Delta_0 \approx 1.76 k_B T_c$
- High-TcSuperconductivity(YBCO: 92K) Temperature
Preparation for Next Chapter
- In Chapter 5, we will learn about optical and thermal properties
- We will calculate optical absorption, bandgap, phonons, and thermal conductivity
Exercises
Exercise1:Drude (Difficulty:★☆☆)
Problem:Calculate the electrical conductivity and mobility from the following data.
- Material: n-type Si semiconductor
- Carrier density: $n = 1.0 \times 10^{22}$ m⁻³
- Relaxation time: $\tau = 0.1$ ps = $1.0 \times 10^{-13}$ s
- Effective mass: $m^* = 0.26 m_e$
Hint:
- $\sigma = ne^2\tau/m^*$
- $\mu = e\tau/m^*$
- $e = 1.602 \times 10^{-19}$ C, $m_e = 9.109 \times 10^{-31}$ kg
Answer:$\sigma \approx 1.08 \times 10^4$ S/m、$\mu \approx 674$ cm²/Vs
Exercise2:Hall(Difficulty:★★☆)
Problem:1T 、Hall、Hall$R_H = +5.0 \times 10^{-4}$ m³/C。
- Are the carriers electrons or holes?
- Carrier densitycalculation
- $\sigma = 100$ S/m 、calculation
Answer:
- $R_H > 0$ (p)
- $n = 1/(R_H \cdot e) = 1.25 \times 10^{22}$ m⁻³
- $\mu = R_H \cdot \sigma = 0.05$ m²/Vs = 500 cm²/Vs
Exercise3: calculation(Difficulty:★★☆)
Problem:Fe(BCCstructure、a=2.87 Å) Spin-Polarized DFT Calculations、 :
- Spin-upelectrons: 8.1
- Spin-downelectrons: 5.9
Calculate the magnetic moment and compare with the experimental value (2.2 μB).
Hint:$\mu = (N_\uparrow - N_\downarrow) \mu_B$
Answer:$\mu = (8.1 - 5.9) \mu_B = 2.2 \mu_B$(agrees with experimental value)
Exercise4:Superconducting gap calculation(Difficulty:★★☆)
Problem:Nb() criticalTemperature $T_c = 9.2$K。
- $T = 0$K atSuperconducting gap$\Delta_0$calculation
- $T = 5$K atSuperconducting gap$\Delta(5K)$calculation
Hint:
- $\Delta_0 = 1.76 k_B T_c$
- $\Delta(T) = \Delta_0 \tanh(1.74\sqrt{(T_c - T)/T})$
- $k_B = 8.617 \times 10^{-5}$ eV/K
Answer:
- $\Delta_0 = 1.76 \times 8.617 \times 10^{-5} \times 9.2 = 1.40$ meV
- $\Delta(5K) = 1.40 \times \tanh(1.74\sqrt{(9.2-5)/5}) = 1.40 \times 0.87 = 1.22$ meV
Exercise5:VASPcalculation (Difficulty:★★★)
Problem:AntiFerromagnetismMnO(rocksaltstructure、a=4.43 Å) Spin-Polarized DFT Calculations。
- Create MnO structure with ASE (2×2×2 supercell)
- Mn atomInitial magnetic moment(±5.0 μB)
- Create INCAR file (ISPIN=2, MAGMOM settings)
- Create KPOINTS file (6×6×6 mesh)
Evaluation criteria:
- Is MAGMOM set only for Mn atoms?
- Are Mn atom spins in alternating configuration?
- O atomInitial magnetic moment0
Exercise6:susceptibility Temperature(Difficulty:★★★)
Problem:Paramagnetism susceptibility 、Curie:
$$ \chi = \frac{C}{T} $$、$C$ Curieconstant。 、Curieconstant:
| Temperature [K] | susceptibility $\chi$ [10⁻⁶] |
|---|---|
| 100 | 8.5 |
| 200 | 4.2 |
| 300 | 2.8 |
| 400 | 2.1 |
Hint:$\chi$$1/T$ Curieconstant
Sample Answer:$C \approx 8.5 \times 10^{-4}$ K(linear fit)
References
- Ashcroft, N. W., & Mermin, N. D. (1976). "Solid State Physics". Harcourt College Publishers.
- Kittel, C. (2004). "Introduction to Solid State Physics" (8th ed.). Wiley.
- Blundell, S. (2001). "Magnetism in Condensed Matter". Oxford University Press.
- Tinkham, M. (2004). "Introduction to Superconductivity" (2nd ed.). Dover Publications.
- Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). "Theory of Superconductivity". Physical Review, 108, 1175.
- VASP manual: Magnetism and SOC - https://www.vasp.at/wiki/index.php/Magnetism
Disclaimer
- This content is provided solely for educational, research, and informational purposes and does not constitute professional advice (legal, accounting, technical warranty, etc.).
- This content and accompanying code examples are provided "AS IS" without any warranty, express or implied, including but not limited to merchantability, fitness for a particular purpose, non-infringement, accuracy, completeness, operation, or safety.
- The author and Tohoku University assume no responsibility for the content, availability, or safety of external links, third-party data, tools, libraries, etc.
- To the maximum extent permitted by applicable law, the author and Tohoku University shall not be liable for any direct, indirect, incidental, special, consequential, or punitive damages arising from the use, execution, or interpretation of this content.
- The content may be changed, updated, or discontinued without notice.
- The copyright and license of this content are subject to the stated conditions (e.g., CC BY 4.0). Such licenses typically include no-warranty clauses.