🌐 EN | 🇯🇵 JP | Last sync: 2025-11-16

Chapter 1: Fundamentals of Random Variables and Probability Distributions

Random Variables and Probability Distributions

1.1 Discrete Random Variables and Probability Mass Functions

📐 Definition: Discrete Random Variable
A discrete random variable \(X\) is a random variable that takes countable values \(\{x_1, x_2, \ldots\}\).
The Probability Mass Function (PMF) is: \[P(X = x_i) = p_i, \quad \sum_{i} p_i = 1\] It represents the probability of occurrence of each value.

💻 Code Example 1: Visualization of Discrete Probability Distribution

import numpy as np import matplotlib.pyplot as plt from scipy import stats # Dice example (uniform discrete distribution) outcomes = np.arange(1, 7) # 1 to 6 probabilities = np.ones(6) / 6 # Probability for each face is 1/6 fig, axes = plt.subplots(1, 2, figsize=(14, 5)) # PMF bar graph axes[0].bar(outcomes, probabilities, color='#667eea', alpha=0.7, edgecolor='black') axes[0].set_xlabel('Outcome (x)', fontsize=12) axes[0].set_ylabel('Probability P(X=x)', fontsize=12) axes[0].set_title('Probability Mass Function (PMF) of a Die', fontsize=14, fontweight='bold') axes[0].set_xticks(outcomes) axes[0].grid(axis='y', alpha=0.3) # Cumulative Distribution Function (CDF) cdf = np.cumsum(probabilities) axes[1].step(outcomes, cdf, where='post', color='#764ba2', linewidth=2) axes[1].scatter(outcomes, cdf, color='#764ba2', s=50, zorder=5) axes[1].set_xlabel('Outcome (x)', fontsize=12) axes[1].set_ylabel('Cumulative Probability P(X≤x)', fontsize=12) axes[1].set_title('Cumulative Distribution Function (CDF)', fontsize=14, fontweight='bold') axes[1].set_xticks(outcomes) axes[1].grid(alpha=0.3) axes[1].set_ylim([0, 1.1]) plt.tight_layout() plt.show() # Calculation of expectation and variance E_X = np.sum(outcomes * probabilities) E_X2 = np.sum(outcomes**2 * probabilities) Var_X = E_X2 - E_X**2 print("Statistics of a Die:") print(f"Expectation E[X] = {E_X:.4f}") print(f"Variance Var(X) = {Var_X:.4f}") print(f"Standard Deviation σ = {np.sqrt(Var_X):.4f}")
Statistics of a Die: Expectation E[X] = 3.5000 Variance Var(X) = 2.9167 Standard Deviation σ = 1.7078

1.2 Continuous Random Variables and Probability Density Functions

📐 Definition: Continuous Random Variable
A continuous random variable \(X\) takes real values and is characterized by a Probability Density Function (PDF) \(f(x)\): \[P(a \leq X \leq b) = \int_a^b f(x) \, dx, \quad \int_{-\infty}^{\infty} f(x) \, dx = 1\] The Cumulative Distribution Function (CDF) is: \[F(x) = P(X \leq x) = \int_{-\infty}^x f(t) \, dt\]

💻 Code Example 2: Continuous Probability Distribution and PDF/CDF

# Example of uniform distribution U(0, 1) x = np.linspace(-0.5, 1.5, 1000) uniform_dist = stats.uniform(loc=0, scale=1) pdf = uniform_dist.pdf(x) cdf = uniform_dist.cdf(x) fig, axes = plt.subplots(1, 2, figsize=(14, 5)) # PDF axes[0].plot(x, pdf, color='#667eea', linewidth=2.5, label='PDF') axes[0].fill_between(x, 0, pdf, where=(x >= 0.3) & (x <= 0.7), alpha=0.3, color='#764ba2', label='P(0.3 ≤ X ≤ 0.7)') axes[0].set_xlabel('x', fontsize=12) axes[0].set_ylabel('f(x)', fontsize=12) axes[0].set_title('Probability Density Function of Uniform Distribution U(0,1)', fontsize=14, fontweight='bold') axes[0].legend(fontsize=10) axes[0].grid(alpha=0.3) axes[0].set_ylim([0, 1.5]) # CDF axes[1].plot(x, cdf, color='#764ba2', linewidth=2.5) axes[1].axhline(y=0.7, color='red', linestyle='--', alpha=0.5, label='P(X≤0.7) = 0.7') axes[1].axvline(x=0.7, color='red', linestyle='--', alpha=0.5) axes[1].set_xlabel('x', fontsize=12) axes[1].set_ylabel('F(x)', fontsize=12) axes[1].set_title('Cumulative Distribution Function (CDF)', fontsize=14, fontweight='bold') axes[1].legend(fontsize=10) axes[1].grid(alpha=0.3) plt.tight_layout() plt.show() # Probability calculation prob = uniform_dist.cdf(0.7) - uniform_dist.cdf(0.3) print(f"P(0.3 ≤ X ≤ 0.7) = {prob:.4f}")
P(0.3 ≤ X ≤ 0.7) = 0.4000

1.3 Expectation, Variance, and Moments

📊 Theorem: Expectation and Variance
Expectation (Mean): \[E[X] = \sum_i x_i p_i \quad (\text{discrete}), \quad E[X] = \int_{-\infty}^{\infty} x f(x) \, dx \quad (\text{continuous})\] Variance: \[Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2\] k-th Moment: \[E[X^k] = \sum_i x_i^k p_i \quad (\text{discrete}), \quad E[X^k] = \int_{-\infty}^{\infty} x^k f(x) \, dx \quad (\text{continuous})\]

💻 Code Example 3: Calculation of Expectation and Variance

# Calculate expectation and variance for multiple distributions distributions = { 'Uniform U(0,1)': stats.uniform(0, 1), 'Normal N(5,2²)': stats.norm(5, 2), 'Exponential Exp(λ=1)': stats.expon(scale=1), 'Beta Beta(2,5)': stats.beta(2, 5) } print("Expectation and Variance of Each Distribution:\n" + "="*50) for name, dist in distributions.items(): mean = dist.mean() var = dist.var() std = dist.std() # Calculate k-th moments (k=3,4) if hasattr(dist, 'moment'): third_moment = dist.moment(3) fourth_moment = dist.moment(4) else: third_moment = np.nan fourth_moment = np.nan print(f"\n{name}:") print(f" Expectation E[X] = {mean:.4f}") print(f" Variance Var(X) = {var:.4f}") print(f" Standard Deviation σ = {std:.4f}") # Visualization fig, axes = plt.subplots(2, 2, figsize=(14, 10)) axes = axes.flatten() x_ranges = [ np.linspace(0, 1, 500), np.linspace(-1, 11, 500), np.linspace(0, 6, 500), np.linspace(0, 1, 500) ] for i, ((name, dist), x_range) in enumerate(zip(distributions.items(), x_ranges)): pdf = dist.pdf(x_range) mean = dist.mean() std = dist.std() axes[i].plot(x_range, pdf, color='#667eea', linewidth=2.5, label='PDF') axes[i].axvline(mean, color='red', linestyle='--', linewidth=2, label=f'E[X]={mean:.2f}') axes[i].axvline(mean - std, color='orange', linestyle=':', alpha=0.7, label=f'σ={std:.2f}') axes[i].axvline(mean + std, color='orange', linestyle=':', alpha=0.7) axes[i].fill_between(x_range, 0, pdf, alpha=0.2, color='#764ba2') axes[i].set_xlabel('x', fontsize=11) axes[i].set_ylabel('f(x)', fontsize=11) axes[i].set_title(name, fontsize=12, fontweight='bold') axes[i].legend(fontsize=9) axes[i].grid(alpha=0.3) plt.tight_layout() plt.show()

1.4 Binomial and Poisson Distributions

📐 Definition: Binomial and Poisson Distributions
Binomial Distribution \(B(n, p)\): Distribution of the number of successes X in n independent trials with success probability p \[P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad E[X] = np, \quad Var(X) = np(1-p)\] Poisson Distribution \(Pois(\lambda)\): When the average number of occurrences per unit time is λ \[P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad E[X] = Var(X) = \lambda\] The Poisson distribution is obtained as the limit of the binomial distribution (\(n \to \infty, p \to 0, np = \lambda\)).

💻 Code Example 4: Comparison of Binomial and Poisson Distributions

# Comparison of binomial and Poisson distributions n = 100 # Number of trials p = 0.03 # Success probability lam = n * p # λ = np = 3 binomial = stats.binom(n, p) poisson = stats.poisson(lam) k = np.arange(0, 15) fig, axes = plt.subplots(1, 2, figsize=(14, 5)) # PMF comparison axes[0].bar(k - 0.2, binomial.pmf(k), width=0.4, alpha=0.7, color='#667eea', label=f'Binomial B({n},{p})') axes[0].bar(k + 0.2, poisson.pmf(k), width=0.4, alpha=0.7, color='#764ba2', label=f'Poisson Pois({lam})') axes[0].set_xlabel('k (Number of Successes)', fontsize=12) axes[0].set_ylabel('Probability P(X=k)', fontsize=12) axes[0].set_title('Comparison of Binomial and Poisson Distributions', fontsize=14, fontweight='bold') axes[0].legend(fontsize=10) axes[0].grid(axis='y', alpha=0.3) # Visualization of error error = np.abs(binomial.pmf(k) - poisson.pmf(k)) axes[1].bar(k, error, color='red', alpha=0.6) axes[1].set_xlabel('k', fontsize=12) axes[1].set_ylabel('|P_binomial - P_poisson|', fontsize=12) axes[1].set_title('Approximation Error', fontsize=14, fontweight='bold') axes[1].grid(axis='y', alpha=0.3) plt.tight_layout() plt.show() # Comparison of statistics print("Comparison of Statistics:") print(f"Binomial: E[X]={binomial.mean():.4f}, Var(X)={binomial.var():.4f}") print(f"Poisson: E[X]={poisson.mean():.4f}, Var(X)={poisson.var():.4f}") # Application example in materials science: Defect occurrence probability print("\n[Application Example in Materials Science]") print("When an average of 3 defects occur per cm² in a thin film deposition process:") area = 5 # cm² lam_defects = 3 * area poisson_defects = stats.poisson(lam_defects) print(f"Probability of 10 or fewer defects in a 5cm² area: {poisson_defects.cdf(10):.4f}") print(f"Probability of 15 or more defects in a 5cm² area: {1 - poisson_defects.cdf(14):.4f}")
Comparison of Statistics: Binomial: E[X]=3.0000, Var(X)=2.9100 Poisson: E[X]=3.0000, Var(X)=3.0000 [Application Example in Materials Science] When an average of 3 defects occur per cm² in a thin film deposition process: Probability of 10 or fewer defects in a 5cm² area: 0.1185 Probability of 15 or more defects in a 5cm² area: 0.5289

1.5 Normal Distribution (Gaussian Distribution)

📐 Definition: Normal Distribution
Probability density function of the normal distribution \(N(\mu, \sigma^2)\): \[f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\] Expectation \(E[X] = \mu\), Variance \(Var(X) = \sigma^2\)
Standard Normal Distribution: \(N(0, 1)\) is a normal distribution with \(\mu=0, \sigma=1\)
Any normal distribution can be transformed to a standard normal distribution through the standardization transformation \(Z = \frac{X - \mu}{\sigma}\).

💻 Code Example 5: Properties and Applications of Normal Distribution

# Visualization of normal distribution fig, axes = plt.subplots(2, 2, figsize=(14, 10)) # (1) Effect of different μ x = np.linspace(-10, 10, 1000) mus = [0, 2, -2] sigma = 1 axes[0, 0].set_title('Effect of Mean μ (σ=1 fixed)', fontsize=12, fontweight='bold') for mu in mus: dist = stats.norm(mu, sigma) axes[0, 0].plot(x, dist.pdf(x), linewidth=2, label=f'μ={mu}') axes[0, 0].set_xlabel('x', fontsize=11) axes[0, 0].set_ylabel('f(x)', fontsize=11) axes[0, 0].legend() axes[0, 0].grid(alpha=0.3) # (2) Effect of different σ mu = 0 sigmas = [0.5, 1, 2] axes[0, 1].set_title('Effect of Standard Deviation σ (μ=0 fixed)', fontsize=12, fontweight='bold') for sigma in sigmas: dist = stats.norm(mu, sigma) axes[0, 1].plot(x, dist.pdf(x), linewidth=2, label=f'σ={sigma}') axes[0, 1].set_xlabel('x', fontsize=11) axes[0, 1].set_ylabel('f(x)', fontsize=11) axes[0, 1].legend() axes[0, 1].grid(alpha=0.3) # (3) 68-95-99.7 Rule (3σ Rule) mu, sigma = 0, 1 dist = stats.norm(mu, sigma) x_range = np.linspace(-4, 4, 1000) axes[1, 0].plot(x_range, dist.pdf(x_range), 'black', linewidth=2) axes[1, 0].fill_between(x_range, 0, dist.pdf(x_range), where=(x_range >= -sigma) & (x_range <= sigma), alpha=0.3, color='green', label='68% (±1σ)') axes[1, 0].fill_between(x_range, 0, dist.pdf(x_range), where=((x_range >= -2*sigma) & (x_range < -sigma)) | ((x_range > sigma) & (x_range <= 2*sigma)), alpha=0.3, color='yellow', label='95% (±2σ)') axes[1, 0].fill_between(x_range, 0, dist.pdf(x_range), where=((x_range >= -3*sigma) & (x_range < -2*sigma)) | ((x_range > 2*sigma) & (x_range <= 3*sigma)), alpha=0.3, color='orange', label='99.7% (±3σ)') axes[1, 0].set_title('68-95-99.7 Rule (3σ Rule)', fontsize=12, fontweight='bold') axes[1, 0].set_xlabel('x', fontsize=11) axes[1, 0].set_ylabel('f(x)', fontsize=11) axes[1, 0].legend(fontsize=9) axes[1, 0].grid(alpha=0.3) # (4) Standardization and percentiles standard_normal = stats.norm(0, 1) percentiles = [0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99] z_values = [standard_normal.ppf(p) for p in percentiles] axes[1, 1].plot(x_range, standard_normal.pdf(x_range), 'black', linewidth=2) for p, z in zip(percentiles, z_values): axes[1, 1].axvline(z, color='red', linestyle='--', alpha=0.5) axes[1, 1].text(z, 0.4, f'{int(p*100)}%', fontsize=8, ha='center') axes[1, 1].set_title('Percentiles of Standard Normal Distribution', fontsize=12, fontweight='bold') axes[1, 1].set_xlabel('z', fontsize=11) axes[1, 1].set_ylabel('φ(z)', fontsize=11) axes[1, 1].grid(alpha=0.3) plt.tight_layout() plt.show() # Probability calculation print("Probability Calculation in Normal Distribution N(100, 15²):") mu, sigma = 100, 15 exam_scores = stats.norm(mu, sigma) print(f"P(X ≥ 120) = {1 - exam_scores.cdf(120):.4f}") print(f"P(85 ≤ X ≤ 115) = {exam_scores.cdf(115) - exam_scores.cdf(85):.4f}") # Standardization x_value = 120 z_score = (x_value - mu) / sigma print(f"\nz-score for X=120: z = {z_score:.4f}") print(f"P(Z ≥ {z_score:.4f}) = {1 - standard_normal.cdf(z_score):.4f}")

1.6 Exponential Distribution and Waiting Time Problems

📐 Definition: Exponential Distribution
The exponential distribution \(Exp(\lambda)\) represents the waiting time between events in a Poisson process: \[f(x) = \lambda e^{-\lambda x} \quad (x \geq 0), \quad F(x) = 1 - e^{-\lambda x}\] Expectation \(E[X] = \frac{1}{\lambda}\), Variance \(Var(X) = \frac{1}{\lambda^2}\)
Memoryless Property: \(P(X > s+t \mid X > s) = P(X > t)\) (past information does not affect the future)

💻 Code Example 6: Exponential Distribution and Waiting Time Problems

# Simulation of exponential distribution lambda_rate = 0.5 # Average arrival rate (0.5 times per hour = once every 2 hours) exp_dist = stats.expon(scale=1/lambda_rate) # Visualization of PDF and CDF x = np.linspace(0, 10, 1000) pdf = exp_dist.pdf(x) cdf = exp_dist.cdf(x) fig, axes = plt.subplots(1, 3, figsize=(16, 5)) # (1) PDF and CDF axes[0].plot(x, pdf, color='#667eea', linewidth=2.5, label='PDF') axes[0].fill_between(x, 0, pdf, alpha=0.2, color='#667eea') axes[0].set_xlabel('Time (hours)', fontsize=11) axes[0].set_ylabel('f(x)', fontsize=11) axes[0].set_title('Probability Density Function of Exponential Distribution', fontsize=12, fontweight='bold') axes[0].grid(alpha=0.3) axes[0].legend() axes[1].plot(x, cdf, color='#764ba2', linewidth=2.5, label='CDF') axes[1].axhline(y=0.5, color='red', linestyle='--', alpha=0.5, label='Median') median = exp_dist.median() axes[1].axvline(x=median, color='red', linestyle='--', alpha=0.5) axes[1].set_xlabel('Time (hours)', fontsize=11) axes[1].set_ylabel('F(x)', fontsize=11) axes[1].set_title('Cumulative Distribution Function', fontsize=12, fontweight='bold') axes[1].grid(alpha=0.3) axes[1].legend() # (2) Verification of memoryless property # Verify that P(X > 3+2 | X > 3) = P(X > 2) t = 2 s = 3 prob_uncond = 1 - exp_dist.cdf(t) # P(X > 2) prob_cond = (1 - exp_dist.cdf(s+t)) / (1 - exp_dist.cdf(s)) # P(X > 5 | X > 3) print("Verification of Memoryless Property:") print(f"P(X > {t}) = {prob_uncond:.6f}") print(f"P(X > {s+t} | X > {s}) = {prob_cond:.6f}") print(f"Difference: {abs(prob_uncond - prob_cond):.10f}") # (3) Simulation np.random.seed(42) n_simulations = 10000 samples = exp_dist.rvs(size=n_simulations) axes[2].hist(samples, bins=50, density=True, alpha=0.6, color='#764ba2', edgecolor='black', label='Simulation') axes[2].plot(x, pdf, color='#667eea', linewidth=2.5, label='Theoretical PDF') axes[2].set_xlabel('Time (hours)', fontsize=11) axes[2].set_ylabel('Density', fontsize=11) axes[2].set_title(f'Simulation (n={n_simulations})', fontsize=12, fontweight='bold') axes[2].legend() axes[2].grid(alpha=0.3) plt.tight_layout() plt.show() # Statistics print(f"\nTheoretical: E[X]={exp_dist.mean():.4f}, Var(X)={exp_dist.var():.4f}") print(f"Observed: E[X]={np.mean(samples):.4f}, Var(X)={np.var(samples):.4f}") # Application in materials science: Equipment failure intervals print("\n[Application Example in Materials Science]") print("When the failure interval of manufacturing equipment follows exponential distribution Exp(λ=0.1 [1/day]):") lambda_failure = 0.1 failure_dist = stats.expon(scale=1/lambda_failure) print(f"Mean Time Between Failures (MTBF): {failure_dist.mean():.2f} days") print(f"Probability of failure within 7 days: {failure_dist.cdf(7):.4f}") print(f"Probability of no failure for 30 days or more: {1 - failure_dist.cdf(30):.4f}")
Verification of Memoryless Property: P(X > 2) = 0.367879 P(X > 5 | X > 3) = 0.367879 Difference: 0.0000000000 Theoretical: E[X]=2.0000, Var(X)=4.0000 Observed: E[X]=2.0124, Var(X)=4.0346 [Application Example in Materials Science] When the failure interval of manufacturing equipment follows exponential distribution Exp(λ=0.1 [1/day]): Mean Time Between Failures (MTBF): 10.00 days Probability of failure within 7 days: 0.5034 Probability of no failure for 30 days or more: 0.0498

1.7 Utilizing Statistical Distributions with scipy.stats

💻 Code Example 7: Utilizing Statistical Distributions with scipy.stats

# Various distributions available in scipy.stats from scipy.stats import ( bernoulli, binom, poisson, geom, # Discrete distributions uniform, norm, expon, gamma, beta, weibull_min # Continuous distributions ) # Unified interface distributions = { 'Bernoulli': bernoulli(p=0.3), 'Binomial': binom(n=10, p=0.3), 'Poisson': poisson(mu=3), 'Geometric': geom(p=0.3), 'Uniform': uniform(loc=0, scale=1), 'Normal': norm(loc=0, scale=1), 'Exponential': expon(scale=2), 'Gamma': gamma(a=2, scale=2), 'Beta': beta(a=2, b=5), 'Weibull': weibull_min(c=1.5, scale=1) } print("Statistical Distribution Operations with scipy.stats:\n" + "="*60) # Key methods for each distribution example_dist = norm(loc=5, scale=2) print("\nKey Methods (Example with Normal Distribution N(5, 2²)):") print(f" .mean() Mean: {example_dist.mean():.4f}") print(f" .var() Variance: {example_dist.var():.4f}") print(f" .std() Standard Deviation: {example_dist.std():.4f}") print(f" .pdf(6) Probability Density (x=6): {example_dist.pdf(6):.6f}") print(f" .cdf(7) Cumulative Probability (x≤7): {example_dist.cdf(7):.6f}") print(f" .ppf(0.95) 95th Percentile: {example_dist.ppf(0.95):.4f}") print(f" .rvs(5) Random Number Generation (5 samples): {example_dist.rvs(5)}") # Characteristics of each distribution print("\n\nStatistics for Each Distribution:") print(f"{'Distribution':<12} {'Mean':>10} {'Variance':>10} {'Skewness':>10} {'Kurtosis':>10}") print("="*60) for name, dist in distributions.items(): try: mean = dist.mean() var = dist.var() skew = dist.stats(moments='s') kurt = dist.stats(moments='k') print(f"{name:<12} {mean:>10.4f} {var:>10.4f} {skew:>10.4f} {kurt:>10.4f}") except: print(f"{name:<12} (Cannot calculate)") # Calculation of quantiles (confidence intervals, etc.) print("\n\nQuantiles of Standard Normal Distribution N(0,1):") alpha_levels = [0.90, 0.95, 0.99] standard_normal = norm(0, 1) for alpha in alpha_levels: lower = standard_normal.ppf((1-alpha)/2) upper = standard_normal.ppf((1+alpha)/2) print(f"{int(alpha*100)}% Confidence Interval: [{lower:.4f}, {upper:.4f}]") # Goodness-of-fit test (Kolmogorov-Smirnov test) from scipy.stats import kstest np.random.seed(42) sample_data = norm(loc=10, scale=2).rvs(1000) # Hypothesis: Data follows N(10, 2²) ks_stat, p_value = kstest(sample_data, lambda x: norm(10, 2).cdf(x)) print(f"\n\nKolmogorov-Smirnov Goodness-of-Fit Test:") print(f"Test Statistic: {ks_stat:.6f}") print(f"p-value: {p_value:.6f}") print(f"Conclusion: {'Cannot reject null hypothesis (distribution fits)' if p_value > 0.05 else 'Reject null hypothesis (distribution does not fit)'}") # Application in materials science: Weibull distribution analysis of material strength print("\n\n[Application Example in Materials Science]Strength Distribution of Ceramics (Weibull Distribution):") shape_param = 10 # Shape parameter (larger value means more uniform) scale_param = 500 # Scale parameter (characteristic strength) weibull = weibull_min(c=shape_param, scale=scale_param) print(f"Weibull Distribution: shape={shape_param}, scale={scale_param} MPa") print(f"Mean Strength: {weibull.mean():.2f} MPa") print(f"Standard Deviation: {weibull.std():.2f} MPa") print(f"Probability of Fracture at 450 MPa or Below: {weibull.cdf(450):.4f}") print(f"Design Strength (99% Reliability): {weibull.ppf(0.01):.2f} MPa")
💡 Note: scipy.stats provides over 70 probability distributions and operates them with a unified interface (pdf, cdf, ppf, rvs, mean, var, etc.). In materials science, Weibull distribution (strength of brittle materials), lognormal distribution (particle size distribution), and gamma distribution (waiting time) are commonly used.

Exercises

📝 Exercise 1: Statistical Distributions in Quality Control
When the defect rate of a product is 2%, for a lot of 100 products:
  1. Model the distribution of defective products using binomial and Poisson distributions and compare them
  2. Calculate the probability of having 3 or more defective products
  3. Find the probability that the number of defective products falls within the range of expectation ± 1 standard deviation
📝 Exercise 2: Measurement Error Analysis Using Normal Distribution
When measurement equipment error follows normal distribution N(0, 0.5²):
  1. Calculate the probability that the error is within ±1 mm
  2. Find the 95% confidence interval
  3. Calculate the probability that the absolute value of the error exceeds 0.8 mm
📝 Exercise 3: Failure Analysis Using Exponential Distribution
When the lifespan of electronic components follows exponential distribution Exp(λ=0.001 [1/hour]):
  1. Calculate the mean lifespan (MTBF)
  2. Find the probability of operating for 1000 hours or more
  3. Using the memoryless property, calculate the probability that a component that has already operated for 500 hours will operate for an additional 1000 hours or more

Disclaimer