🌐 EN | 🇯🇵 JP | Last sync: 2025-11-16

Chapter 5: Implementation Strategy and Case Studies

Implementation Strategy and Case Studies

This chapter covers Implementation Strategy and Case Studies. You will learn essential concepts and techniques.

AI Technology Implementation Strategy for Real Plants

In this chapter, we will learn practical strategies for implementing the AI technologies covered so far into actual chemical plants. We will systematically explain all elements necessary for implementation, including data integration, model management, online updates, A/B testing, and ROI evaluation.

graph TB A[Data Integration Platform] --> B[Model Development & Management] B --> C[Deployment] C --> D[Monitoring] D --> E[Continuous Improvement] E --> B A --> A1[DCS/SCADA] A --> A2[MES/LIMS] A --> A3[External Data] B --> B1[MLflow] B --> B2[Version Control] C --> C1[A/B Testing] C --> C2[Staged Rollout] D --> D1[Performance Monitoring] D --> D2[Drift Detection] E --> E1[Online Learning] E --> E2[Model Update] style A fill:#11998e,color:#fff style B fill:#1fb89e,color:#fff style C fill:#2bc766,color:#fff style D fill:#38ef7d,color:#fff style E fill:#11998e,color:#fff
# Requirements:
# - Python 3.9+
# - numpy>=1.24.0, <2.0.0


            <div class="code-header">Example 1: Data Integration Pipeline</div>
            <div class="code-desc">
                An ETL pipeline that integrates multiple data sources such as DCS, SCADA, and MES, and transforms them into inputs for AI models.
            </div>
            <pre><code>import pandas as pd
import numpy as np
from pathlib import Path
from datetime import datetime, timedelta
from typing import Dict, List

class PlantDataIntegrationPipeline:
    """Chemical Plant Data Integration Pipeline"""

    def __init__(self, data_sources: Dict[str, str]):
        self.data_sources = data_sources
        self.integrated_data = None

    def extract_dcs_data(self, start_time: datetime, end_time: datetime) -> pd.DataFrame:
        """Extract DCS (Distributed Control System) data"""
        # In practice, retrieve from OPC-UA or Historian
        print(f"Extracting DCS data: {start_time} ~ {end_time}")

        # Generate sample data
        periods = int((end_time - start_time).total_seconds() / 60)  # 1-minute interval
        timestamps = pd.date_range(start_time, end_time, periods=periods)

        dcs_data = pd.DataFrame({
            'timestamp': timestamps,
            'reactor_temp': 350 + np.random.normal(0, 2, periods),
            'reactor_pressure': 5.0 + np.random.normal(0, 0.1, periods),
            'feed_flow': 100 + np.random.normal(0, 5, periods),
            'coolant_flow': 50 + np.random.normal(0, 2, periods)
        })

        return dcs_data

    def extract_mes_data(self, start_time: datetime, end_time: datetime) -> pd.DataFrame:
        """Extract MES (Manufacturing Execution System) data"""
        print(f"Extracting MES data: {start_time} ~ {end_time}")

        # Batch information
        num_batches = int((end_time - start_time).days / 2)  # 1 batch per 2 days

        mes_data = pd.DataFrame({
            'batch_id': [f"BATCH_{i:04d}" for i in range(num_batches)],
            'start_time': [start_time + timedelta(days=2*i) for i in range(num_batches)],
            'product_grade': np.random.choice(['Grade_A', 'Grade_B'], num_batches),
            'target_yield': np.random.uniform(0.92, 0.98, num_batches)
        })

        return mes_data

    def extract_lims_data(self, start_time: datetime, end_time: datetime) -> pd.DataFrame:
        """Extract LIMS (Laboratory Information Management System) data"""
        print(f"Extracting LIMS data: {start_time} ~ {end_time}")

        # Quality measurement data
        num_samples = int((end_time - start_time).days * 3)  # 3 samples per day

        lims_data = pd.DataFrame({
            'sample_time': pd.date_range(start_time, end_time, periods=num_samples),
            'purity': np.random.uniform(99.0, 99.9, num_samples),
            'viscosity': np.random.uniform(50, 70, num_samples),
            'color_index': np.random.uniform(1, 5, num_samples)
        })

        return lims_data

    def transform_data(self, dcs_df: pd.DataFrame, mes_df: pd.DataFrame,
                      lims_df: pd.DataFrame) -> pd.DataFrame:
        """Transform and integrate data"""
        print("Transforming and integrating data...")

        # Resample DCS data to 10-minute intervals
        dcs_resampled = dcs_df.set_index('timestamp').resample('10T').mean()

        # Merge LIMS data to nearest timestamp
        dcs_resampled['sample_time'] = dcs_resampled.index
        merged = pd.merge_asof(
            dcs_resampled.reset_index(),
            lims_df,
            left_on='timestamp',
            right_on='sample_time',
            direction='nearest',
            tolerance=pd.Timedelta('4H')
        )

        # Handle missing values
        merged = merged.fillna(method='ffill').fillna(method='bfill')

        # Feature engineering
        merged['temp_pressure_ratio'] = merged['reactor_temp'] / (merged['reactor_pressure'] * 100)
        merged['flow_ratio'] = merged['feed_flow'] / (merged['coolant_flow'] + 1e-6)

        return merged

    def validate_data_quality(self, data: pd.DataFrame) -> Dict:
        """Validate data quality"""
        quality_report = {
            'total_records': len(data),
            'missing_ratio': data.isnull().sum().sum() / (len(data) * len(data.columns)),
            'outliers_detected': 0,
            'time_gaps': 0
        }

        # Outlier detection (3-sigma rule)
        for col in data.select_dtypes(include=[np.number]).columns:
            mean = data[col].mean()
            std = data[col].std()
            outliers = ((data[col] < mean - 3*std) | (data[col] > mean + 3*std)).sum()
            quality_report['outliers_detected'] += outliers

        # Time series gap detection
        if 'timestamp' in data.columns:
            time_diffs = data['timestamp'].diff()
            expected_interval = time_diffs.median()
            gaps = (time_diffs > expected_interval * 2).sum()
            quality_report['time_gaps'] = gaps

        print(f"\nData Quality Report:")
        for key, value in quality_report.items():
            print(f"  {key}: {value}")

        return quality_report

    def run_pipeline(self, start_time: datetime, end_time: datetime) -> pd.DataFrame:
        """Execute the entire pipeline"""
        print(f"\n{'='*60}")
        print(f"Data Integration Pipeline Execution")
        print(f"{'='*60}\n")

        # Extract
        dcs_data = self.extract_dcs_data(start_time, end_time)
        mes_data = self.extract_mes_data(start_time, end_time)
        lims_data = self.extract_lims_data(start_time, end_time)

        # Transform
        integrated_data = self.transform_data(dcs_data, mes_data, lims_data)

        # Validate
        quality_report = self.validate_data_quality(integrated_data)

        self.integrated_data = integrated_data

        print(f"\nIntegrated data creation complete: {len(integrated_data)} records")
        return integrated_data

# Usage example
data_sources = {
    'dcs': 'opc://dcs-server:4840',
    'mes': 'sql://mes-db/production',
    'lims': 'api://lims-server/samples'
}

pipeline = PlantDataIntegrationPipeline(data_sources)
integrated_data = pipeline.run_pipeline(
    start_time=datetime(2025, 1, 1),
    end_time=datetime(2025, 1, 31)
)

print(f"\nIntegrated data sample:")
print(integrated_data.head())

            
Example 2: Model Version Control System
A system that implements model version control, experiment tracking, and model registry for AI models.
import json
import pickle
from pathlib import Path
from datetime import datetime
from typing import Dict, Any
import hashlib

class ModelVersionControl:
    """AI Model Version Control System"""

    def __init__(self, registry_path: str = "./model_registry"):
        self.registry_path = Path(registry_path)
        self.registry_path.mkdir(parents=True, exist_ok=True)
        self.metadata_file = self.registry_path / "registry_metadata.json"
        self._load_registry()

    def _load_registry(self):
        """Load registry"""
        if self.metadata_file.exists():
            with open(self.metadata_file, 'r', encoding='utf-8') as f:
                self.registry = json.load(f)
        else:
            self.registry = {'models': {}, 'experiments': {}}

    def _save_registry(self):
        """Save registry"""
        with open(self.metadata_file, 'w', encoding='utf-8') as f:
            json.dump(self.registry, f, indent=2, ensure_ascii=False)

    def register_model(self, model_name: str, model_obj: Any,
                      metadata: Dict) -> str:
        """Register a model"""
        # Calculate model hash
        model_bytes = pickle.dumps(model_obj)
        model_hash = hashlib.sha256(model_bytes).hexdigest()[:12]

        # Determine version number
        if model_name in self.registry['models']:
            versions = self.registry['models'][model_name]['versions']
            version_numbers = [int(v.split('v')[-1]) for v in versions.keys()]
            new_version = f"v{max(version_numbers) + 1}"
        else:
            new_version = "v1"
            self.registry['models'][model_name] = {'versions': {}}

        # Save model file
        model_dir = self.registry_path / model_name / new_version
        model_dir.mkdir(parents=True, exist_ok=True)

        model_file = model_dir / f"{model_name}_{new_version}.pkl"
        with open(model_file, 'wb') as f:
            pickle.dump(model_obj, f)

        # Save metadata
        version_metadata = {
            'version': new_version,
            'model_hash': model_hash,
            'registered_at': datetime.now().isoformat(),
            'model_file': str(model_file),
            'metadata': metadata
        }

        self.registry['models'][model_name]['versions'][new_version] = version_metadata
        self._save_registry()

        print(f"Model registration complete: {model_name} {new_version}")
        print(f"  Hash: {model_hash}")
        print(f"  Registered at: {version_metadata['registered_at']}")

        return new_version

    def load_model(self, model_name: str, version: str = "latest") -> Any:
        """Load a model"""
        if model_name not in self.registry['models']:
            raise ValueError(f"Model '{model_name}' not found")

        versions = self.registry['models'][model_name]['versions']

        if version == "latest":
            version_numbers = [int(v.split('v')[-1]) for v in versions.keys()]
            version = f"v{max(version_numbers)}"

        if version not in versions:
            raise ValueError(f"Version '{version}' not found")

        model_file = Path(versions[version]['model_file'])

        with open(model_file, 'rb') as f:
            model_obj = pickle.load(f)

        print(f"Model loaded: {model_name} {version}")
        return model_obj

    def log_experiment(self, experiment_name: str, params: Dict,
                      metrics: Dict, artifacts: Dict = None):
        """Log experiment results"""
        experiment_id = f"exp_{len(self.registry['experiments']) + 1:04d}"

        experiment_data = {
            'experiment_id': experiment_id,
            'experiment_name': experiment_name,
            'timestamp': datetime.now().isoformat(),
            'parameters': params,
            'metrics': metrics,
            'artifacts': artifacts or {}
        }

        self.registry['experiments'][experiment_id] = experiment_data
        self._save_registry()

        print(f"\nExperiment logged: {experiment_id}")
        print(f"  Experiment name: {experiment_name}")
        print(f"  Parameters: {params}")
        print(f"  Metrics: {metrics}")

        return experiment_id

    def compare_experiments(self, metric_name: str, top_n: int = 5) -> list:
        """Compare experiment results"""
        experiments = []

        for exp_id, exp_data in self.registry['experiments'].items():
            if metric_name in exp_data['metrics']:
                experiments.append({
                    'experiment_id': exp_id,
                    'experiment_name': exp_data['experiment_name'],
                    'metric_value': exp_data['metrics'][metric_name],
                    'timestamp': exp_data['timestamp']
                })

        # Sort by metric (descending)
        sorted_experiments = sorted(
            experiments,
            key=lambda x: x['metric_value'],
            reverse=True
        )[:top_n]

        print(f"\nTop {top_n} experiments (by {metric_name}):")
        for i, exp in enumerate(sorted_experiments, 1):
            print(f"{i}. {exp['experiment_name']} ({exp['experiment_id']})")
            print(f"   {metric_name}: {exp['metric_value']:.4f}")

        return sorted_experiments

    def get_model_info(self, model_name: str, version: str = "latest") -> Dict:
        """Get model information"""
        if model_name not in self.registry['models']:
            raise ValueError(f"Model '{model_name}' not found")

        versions = self.registry['models'][model_name]['versions']

        if version == "latest":
            version_numbers = [int(v.split('v')[-1]) for v in versions.keys()]
            version = f"v{max(version_numbers)}"

        return versions[version]

# Usage example
mvc = ModelVersionControl(registry_path="./model_registry")

# Register a model
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n_estimators=100, random_state=42)

metadata = {
    'model_type': 'RandomForestRegressor',
    'application': 'Reactor Temperature Prediction',
    'training_data_size': 10000,
    'features': ['pressure', 'flow_rate', 'concentration']
}

version = mvc.register_model('reactor_temp_model', model, metadata)

# Log experiment
mvc.log_experiment(
    experiment_name='Reactor Temp Model - Hyperparameter Tuning',
    params={'n_estimators': 100, 'max_depth': 10},
    metrics={'rmse': 2.3, 'mae': 1.8, 'r2': 0.92}
)

# Get model information
info = mvc.get_model_info('reactor_temp_model', version='latest')
print(f"\nModel Information:")
print(json.dumps(info, indent=2, ensure_ascii=False))
Implementation Key Points

Summary

In this chapter, we learned the practical elements necessary for implementing AI in real plants. We acquired comprehensive strategies for successful AI implementation, including data integration, model management, online updates, A/B testing, and ROI evaluation.

Chemical Plant AI Applications Series Summary

Through all five chapters, we learned practical applications of AI technology in chemical plants. From process monitoring to predictive maintenance, real-time optimization, supply chain management, and implementation strategies, we systematically acquired the knowledge and skills necessary for digital transformation in the chemical industry.

By applying these technologies to actual plants, concrete results such as productivity improvement, quality enhancement, cost reduction, and safety improvement can be achieved.

References

  1. Montgomery, D. C. (2019). Design and Analysis of Experiments (9th ed.). Wiley.
  2. Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.). Wiley.
  3. Seborg, D. E., Edgar, T. F., Mellichamp, D. A., & Doyle III, F. J. (2016). Process Dynamics and Control (4th ed.). Wiley.
  4. McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code." Technometrics, 42(1), 55-61.

Disclaimer