🌐 EN | 🇯🇵 JP | Last sync: 2025-11-16

Chapter 3: Surface Treatment Technologies

Electroplating, Anodizing, Surface Modification, Coating Technologies

📖 Process Technology Introduction Series ⏱️ Study Time: 35-45 min 💻 7 Code Examples 📊 Difficulty: Intermediate

This chapter covers Surface Treatment Technologies. You will learn Calculate plating thickness using Faraday's law, relationship between voltage, and coating technology selection criteria.

Learning Objectives

Upon completing this chapter, you will be able to:

3.1 Electroplating

3.1.1 Faraday's Law and Electrochemical Fundamentals

Electroplating is a process of reducing and depositing metal ions on the cathode (workpiece) surface through electrolysis. Plating rate and film thickness follow Faraday's law.

Faraday's First Law: Deposited metal mass is proportional to the amount of charge passed

$$ m = \frac{M \cdot I \cdot t}{n \cdot F} \cdot \eta $$

Where:

Plating thickness $d$ [μm] is calculated from deposited mass and density:

$$ d = \frac{m}{\rho \cdot A} \times 10^4 $$

$\rho$: Metal density [g/cm³], $A$: Plating area [cm²]

Effect of Current Density:

Throwing Power:

For complex-shaped parts, current density distribution becomes non-uniform, causing variations in film thickness. Throwing power is improved by bath composition, additives, and agitation.

Code Example 3.1: Plating Thickness Calculation Using Faraday's Law

# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0

import numpy as np
import matplotlib.pyplot as plt

def calculate_plating_thickness(current_A, time_s, area_cm2,
                                 metal='Cu', efficiency=0.95):
    """
    Plating thickness calculation using Faraday's law

    Parameters:
    -----------
    current_A : float
        Current [A]
    time_s : float
        Plating time [s]
    area_cm2 : float
        Plating area [cm²]
    metal : str
        Metal type ('Cu', 'Ni', 'Cr', 'Au', 'Ag')
    efficiency : float
        Current efficiency (0-1)

    Returns:
    --------
    thickness_um : float
        Plating thickness [μm]
    """
    # Metal property database
    metal_data = {
        'Cu': {'M': 63.55, 'n': 2, 'rho': 8.96},   # Copper
        'Ni': {'M': 58.69, 'n': 2, 'rho': 8.91},   # Nickel
        'Cr': {'M': 52.00, 'n': 3, 'rho': 7.19},   # Chromium
        'Au': {'M': 196.97, 'n': 1, 'rho': 19.32}, # Gold
        'Ag': {'M': 107.87, 'n': 1, 'rho': 10.49}  # Silver
    }

    F = 96485  # Faraday constant [C/mol]

    props = metal_data[metal]
    M = props['M']
    n = props['n']
    rho = props['rho']

    # Deposited mass [g]
    mass_g = (M * current_A * time_s * efficiency) / (n * F)

    # Plating thickness [μm]
    thickness_um = (mass_g / (rho * area_cm2)) * 1e4

    return thickness_um

# Example: Copper plating
current = 2.0      # 2A
time_hour = 1.0   # 1 hour
time_s = time_hour * 3600
area = 100.0       # 100cm²

thickness = calculate_plating_thickness(current, time_s, area,
                                         metal='Cu', efficiency=0.95)

print(f"=== Copper Plating Process Calculation ===")
print(f"Current: {current} A")
print(f"Current density: {current/area*100:.2f} A/dm²")
print(f"Plating time: {time_hour} hour")
print(f"Plating area: {area} cm²")
print(f"Current efficiency: 95%")
print(f"➡ Plating thickness: {thickness:.2f} μm")

# Plot: Plating time vs thickness
time_range = np.linspace(0, 2, 100) * 3600  # 0-2 hour
thicknesses = [calculate_plating_thickness(current, t, area, 'Cu', 0.95)
               for t in time_range]

plt.figure(figsize=(10, 6))
plt.plot(time_range/3600, thicknesses, linewidth=2, color='#f5576c')
plt.xlabel('Plating Time [hour]', fontsize=12)
plt.ylabel('Plating Thickness [μm]', fontsize=12)
plt.title('Copper Plating: Relationship Between Time and Thickness', fontsize=14, fontweight='bold')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

# Effect of current density
current_densities = np.linspace(0.5, 10, 50)  # 0.5-10 A/dm²
area_dm2 = area / 100  # cm² → dm²
time_fixed = 3600  # 1 hour

thicknesses_cd = []
for cd in current_densities:
    I = cd * area_dm2
    thick = calculate_plating_thickness(I, time_fixed, area, 'Cu', 0.95)
    thicknesses_cd.append(thick)

plt.figure(figsize=(10, 6))
plt.plot(current_densities, thicknesses_cd, linewidth=2, color='#f093fb')
plt.axvspan(0.5, 2, alpha=0.2, color='green', label='Low current density (smooth)')
plt.axvspan(5, 10, alpha=0.2, color='red', label='High current density (rough)')
plt.xlabel('Current Density [A/dm²]', fontsize=12)
plt.ylabel('Plating Thickness [μm]', fontsize=12)
plt.title('Relationship Between Current Density and Plating Thickness (1 hour)', fontsize=14, fontweight='bold')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

3.1.2 Plating Bath and Additives

The composition of the plating bath has a decisive influence on film quality.

Bath Component Role Typical Concentration
Metal salt (e.g., CuSO₄) Metal ion supply 200-250 g/L
Conducting salt (e.g., H₂SO₄) Conductivity enhancement 50-80 g/L
Brightener Smoothing, gloss imparting Several ppm to several hundred ppm
Leveling agent Unevenness flattening Several ppm to tens of ppm
Surfactant Hydrogen gas release promotion Several ppm

Code Example 3.2: Current Distribution Simulation (2D Electrode)

# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0

import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import laplace

def simulate_current_distribution_2d(width=50, height=50,
                                      anode_position='top',
                                      cathode_position='bottom',
                                      iterations=500):
    """
    Current density distribution simulation for 2D electrode configuration
    Solve Laplace's equation using finite difference method

    Parameters:
    -----------
    width, height : int
        Calculation grid size
    anode_position : str
        Anode position ('top', 'bottom', 'left', 'right')
    cathode_position : str
        Cathode position ('top', 'bottom', 'left', 'right')
    iterations : int
        Number of iterations
    """
    # Initialize potential distribution
    phi = np.zeros((height, width))

    # Set boundary conditions
    if anode_position == 'top':
        phi[0, :] = 1.0  # Anode potential
    elif anode_position == 'bottom':
        phi[-1, :] = 1.0
    elif anode_position == 'left':
        phi[:, 0] = 1.0
    elif anode_position == 'right':
        phi[:, -1] = 1.0

    if cathode_position == 'top':
        phi[0, :] = 0.0  # Cathode potential
    elif cathode_position == 'bottom':
        phi[-1, :] = 0.0
    elif cathode_position == 'left':
        phi[:, 0] = 0.0
    elif cathode_position == 'right':
        phi[:, -1] = 0.0

    # Solve Laplace's equation iteratively (∇²φ = 0)
    for _ in range(iterations):
        phi_new = phi.copy()
        phi_new[1:-1, 1:-1] = (phi[:-2, 1:-1] + phi[2:, 1:-1] +
                               phi[1:-1, :-2] + phi[1:-1, 2:]) / 4.0

        # Reapply boundary conditions
        if anode_position == 'top':
            phi_new[0, :] = 1.0
        elif anode_position == 'bottom':
            phi_new[-1, :] = 1.0

        if cathode_position == 'bottom':
            phi_new[-1, :] = 0.0
        elif cathode_position == 'top':
            phi_new[0, :] = 0.0

        phi = phi_new

    # Current density = -∇φ (proportional to potential gradient)
    grad_y, grad_x = np.gradient(phi)
    current_density = np.sqrt(grad_x**2 + grad_y**2)

    return phi, current_density

# Example: Top anode, bottom cathode
phi, j = simulate_current_distribution_2d(width=50, height=50,
                                           anode_position='top',
                                           cathode_position='bottom')

fig, axes = plt.subplots(1, 3, figsize=(15, 5))

# Potential distribution
im1 = axes[0].imshow(phi, cmap='viridis', origin='lower')
axes[0].set_title('Potential Distribution', fontsize=12, fontweight='bold')
axes[0].set_xlabel('X Position')
axes[0].set_ylabel('Y Position')
plt.colorbar(im1, ax=axes[0], label='Potential [V]')

# Current density distribution
im2 = axes[1].imshow(j, cmap='hot', origin='lower')
axes[1].set_title('Current Density Distribution', fontsize=12, fontweight='bold')
axes[1].set_xlabel('X Position')
axes[1].set_ylabel('Y Position')
plt.colorbar(im2, ax=axes[1], label='Current Density [a.u.]')

# Current density distribution on cathode surface
cathode_j = j[-1, :]  # Bottom edge (cathode)
axes[2].plot(cathode_j, linewidth=2, color='#f5576c')
axes[2].set_title('Current Density on Cathode Surface', fontsize=12, fontweight='bold')
axes[2].set_xlabel('X Position')
axes[2].set_ylabel('Current Density [a.u.]')
axes[2].grid(True, alpha=0.3)

# Uniformity evaluation
uniformity = (1 - (cathode_j.std() / cathode_j.mean())) * 100
axes[2].text(0.5, 0.95, f'Uniformity: {uniformity:.1f}%',
             transform=axes[2].transAxes,
             ha='center', va='top',
             bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))

plt.tight_layout()
plt.show()

print(f"Current density uniformity: {uniformity:.2f}%")
print(f"Max/Min current density ratio: {cathode_j.max()/cathode_j.min():.2f}")

3.2 Anodizing

3.2.1 Principles of Aluminum Anodizing

Anodizing is a process of electrochemically oxidizing a metal surface to form an oxide film. Aluminum anodizing (anodization) is a representative example.

Anodizing Process:

  1. Immerse aluminum as anode and platinum as cathode in an electrolyte (sulfuric acid, oxalic acid, etc.)
  2. Apply DC voltage to grow Al₂O₃ film on Al surface
  3. Film has porous structure (barrier layer + porous layer)
flowchart TB subgraph "Anodizing Cell" A[Aluminum Anode] B[Electrolyte
Sulfuric/Oxalic Acid] C[Platinum Cathode] D[DC Power Supply] end D -->|Voltage Applied| A D --> C A -->|Al³⁺| B B -->|O²⁻| A A -->|Al₂O₃ Formation| E[Oxide Film] E --> F[Barrier Layer
Dense, Thin] E --> G[Porous Layer
Porous, Thick] G --> H[Sealing Treatment
Hot Water/Steam] H --> I[Final Film
Improved Corrosion Resistance] style A fill:#f093fb,stroke:#f5576c,stroke-width:2px,color:#fff style E fill:#f5576c,stroke:#f093fb,stroke-width:2px,color:#fff style I fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff

Relationship Between Film Thickness and Voltage:

For sulfuric acid baths, the barrier layer thickness is approximately proportional to the applied voltage (empirical rule):

$$ d_{\text{barrier}} \approx 1.4 \, [\text{nm/V}] \times V $$

The total film thickness (barrier layer + porous layer) depends on plating time and current density.

Code Example 3.3: Anodizing Film Thickness vs Voltage Relationship

# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0

import numpy as np
import matplotlib.pyplot as plt

def anodization_thickness(voltage, material='Al',
                          electrolyte='H2SO4', time_min=30):
    """
    Anodizing film thickness calculation

    Parameters:
    -----------
    voltage : float or array
        Applied voltage [V]
    material : str
        Material ('Al', 'Ti')
    electrolyte : str
        Electrolyte ('H2SO4', 'H2C2O4')
    time_min : float
        Treatment time [min]

    Returns:
    --------
    barrier_thickness : float
        Barrier layer thickness [nm]
    total_thickness : float
        Total thickness [μm]
    """
    # Constants for material and electrolyte
    if material == 'Al':
        if electrolyte == 'H2SO4':
            k_barrier = 1.4  # nm/V (sulfuric acid bath)
            k_porous = 0.3   # μm/min at 1.5 A/dm²
        elif electrolyte == 'H2C2O4':
            k_barrier = 1.0  # nm/V (oxalic acid bath)
            k_porous = 0.5   # μm/min
    elif material == 'Ti':
        k_barrier = 2.5  # nm/V (TiO₂)
        k_porous = 0.2   # μm/min

    # Barrier layer thickness [nm]
    barrier_thickness = k_barrier * voltage

    # Porous layer thickness [μm] (simple model)
    porous_thickness = k_porous * time_min

    # Total thickness [μm]
    total_thickness = (barrier_thickness / 1000) + porous_thickness

    return barrier_thickness, total_thickness
# Scan voltage range
voltages = np.linspace(10, 100, 100)
barrier_thicknesses = []
total_thicknesses = []

for V in voltages:
    d_barrier, d_total = anodization_thickness(V, 'Al', 'H2SO4', 30)
    barrier_thicknesses.append(d_barrier)
    total_thicknesses.append(d_total)

fig, axes = plt.subplots(1, 2, figsize=(14, 5))

# Barrier layer thickness vs Voltage
axes[0].plot(voltages, barrier_thicknesses, linewidth=2,
             color='#f5576c', label='Barrier layer')
axes[0].set_xlabel('Applied Voltage [V]', fontsize=12)
axes[0].set_ylabel('Barrier layer thickness [nm]', fontsize=12)
axes[0].set_title('Barrier layer thicknessvs Voltage (Al/Sulfuric acid bath)',
                  fontsize=14, fontweight='bold')
axes[0].grid(True, alpha=0.3)
axes[0].legend()

# Total thickness vs Voltage
axes[1].plot(voltages, total_thicknesses, linewidth=2,
             color='#f093fb', label='Total thickness (30min)')
axes[1].set_xlabel('Applied Voltage [V]', fontsize=12)
axes[1].set_ylabel('Total thickness [μm]', fontsize=12)
axes[1].set_title('Total thicknessvs Voltage (Al/Sulfuric acid bath)',
                  fontsize=14, fontweight='bold')
axes[1].grid(True, alpha=0.3)
axes[1].legend()

plt.tight_layout()
plt.show()

# Design example:50nm Barrier layeris required
target_barrier = 50  # nm
required_voltage = target_barrier / 1.4
print(f"=== Anodizing Process Design ===")
print(f"targetBarrier layer thickness: {target_barrier} nm")
print(f"➡ Required voltage: {required_voltage:.1f} V")

# Effect of time
times = np.linspace(10, 60, 50)  # 10-60min
total_thicknesses_time = []
for t in times:
    _, d_total = anodization_thickness(50, 'Al', 'H2SO4', t)
    total_thicknesses_time.append(d_total)

plt.figure(figsize=(10, 6))
plt.plot(times, total_thicknesses_time, linewidth=2, color='#f5576c')
plt.xlabel('Treatment Time [min]', fontsize=12)
plt.ylabel('Total thickness [μm]', fontsize=12)
plt.title('Anodizingfilm thicknessvs Treatment Time (50V, Sulfuric acid bath)',
          fontsize=14, fontweight='bold')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

3.2.2 Sealing Treatment (Sealing)

Post-treatment to close the pores in the porous layer and improve corrosion resistance。

3.3 Surface Modification Technologies

3.3.1 Ion Implantation (Ion Implantation)

Ion Implantation is a technique that bombards the material surface with high-energy ions to modify chemical composition and crystal structure。It is used for doping in semiconductor manufacturing and surface hardening of metals。

Ion Implantationprocess

  1. Ion generation at ion source (e.g., N⁺, B⁺, P⁺)
  2. Acceleration to10-200 keVin acceleration field
  3. Selection of desired ions by mass analyzer
  4. Irradiation of sample in vacuum chamber

Concentration Profile (LSStheory)

The concentration distribution after ion implantation is approximated by a Gaussian distribution:

$$ C(x) = \frac{\Phi}{\sqrt{2\pi} \Delta R_p} \exp\left(-\frac{(x - R_p)^2}{2 \Delta R_p^2}\right) $$

Code Example 3.4: Ion Implantation Concentration Profile (Gaussian LSS Theory)

# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf

def ion_implantation_profile(energy_keV, dose_cm2, ion='N',
                              substrate='Si', depth_range=None):
    """
    Ion Implantation Concentration Profile Calculation (Gaussian Approximation)

    Parameters:
    -----------
    energy_keV : float
        Ion energy [keV]
    dose_cm2 : float
        Dose [ions/cm²]
    ion : str
        Ion species ('N', 'B', 'P', 'As')
    substrate : str
        Substrate material ('Si', 'Fe', 'Ti')
    depth_range : array
        Depth range [nm] (auto-set if None)

    Returns:
    --------
    depth : array
        Depth [nm]
    concentration : array
        Concentration [atoms/cm³]
    """
    # Simplified LSS theory parameters (empirical formulas)
    # In practice, use simulation tools like SRIM/TRIM

    # Ion mass
    ion_masses = {'N': 14, 'B': 11, 'P': 31, 'As': 75}
    M_ion = ion_masses[ion]

    # Substrate density and atomic weight
    substrate_data = {
        'Si': {'rho': 2.33, 'M': 28},
        'Fe': {'rho': 7.87, 'M': 56},
        'Ti': {'rho': 4.51, 'M': 48}
    }
    rho_sub = substrate_data[substrate]['rho']
    M_sub = substrate_data[substrate]['M']

    # Range Rp [nm] (simplified formula)
    Rp = 10 * energy_keV**0.7 * (M_sub / M_ion)**0.5

    # Range straggling ΔRp [nm]
    delta_Rp = 0.3 * Rp

    if depth_range is None:
        depth_range = np.linspace(0, 3 * Rp, 500)

    # Gaussian concentration distribution
    concentration = (dose_cm2 / (np.sqrt(2 * np.pi) * delta_Rp)) * \
                    np.exp(-(depth_range - Rp)**2 / (2 * delta_Rp**2))

    return depth_range, concentration, Rp, delta_Rp

# Example: Nitrogen ion implantation into silicon
energy = 50  # keV
dose = 1e16  # ions/cm²

depth, conc, Rp, delta_Rp = ion_implantation_profile(
    energy, dose, ion='N', substrate='Si'
)

plt.figure(figsize=(10, 6))
plt.plot(depth, conc, linewidth=2, color='#f5576c', label=f'{energy} keV, {dose:.0e} ions/cm²')
plt.axvline(Rp, color='gray', linestyle='--', alpha=0.7, label=f'Rp = {Rp:.1f} nm')
plt.axvspan(Rp - delta_Rp, Rp + delta_Rp, alpha=0.2, color='orange',
            label=f'ΔRp = {delta_Rp:.1f} nm')
plt.xlabel('Depth [nm]', fontsize=12)
plt.ylabel('Concentration [atoms/cm³]', fontsize=12)
plt.title('Ion ImplantationConcentration Profile (N⁺ → Si)', fontsize=14, fontweight='bold')
plt.yscale('log')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

# Energy dependence
energies = [30, 50, 100, 150]  # keV
plt.figure(figsize=(10, 6))
for E in energies:
    d, c, rp, drp = ion_implantation_profile(E, dose, 'N', 'Si')
    plt.plot(d, c, linewidth=2, label=f'{E} keV (Rp={rp:.1f} nm)')

plt.xlabel('Depth [nm]', fontsize=12)
plt.ylabel('Concentration [atoms/cm³]', fontsize=12)
plt.title('Ion Implantation Energy and Concentration Profile', fontsize=14, fontweight='bold')
plt.yscale('log')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

print(f"=== Ion Implantation Parameters ===")
print(f"Ion species: N⁺")
print(f"Substrate: Si")
print(f"Energy: {energy} keV")
print(f"Dose: {dose:.0e} ions/cm²")
print(f"➡ range Rp: {Rp:.2f} nm")
print(f"➡ Range straggling ΔRp: {delta_Rp:.2f} nm")
print(f"➡ Peak concentration: {conc.max():.2e} atoms/cm³")

3.3.2 Plasma Treatment (Plasma Treatment)

Plasma breaks and modifies surface chemical bonds to improve wettability, adhesion, and biocompatibility。

3.3.3 Laser Surface Melting (Laser Surface Melting)

High-power laser rapidly heats, melts, and cools the surface to form fine grains or amorphous layers. Hardness and wear resistance are improved。

3.4 Coating Technologies

3.4.1 Thermal Spray (Thermal Spray)

Thermal Spray is a process that forms a coating layer by impacting molten or semi-molten particles at high velocity onto the substrate。

Classification of Thermal Spray Methods

Important Parameters

Code Example 3.5: Coating Adhesion Strength Prediction (Mechanical and Thermal Properties)

# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0

import numpy as np
import matplotlib.pyplot as plt

def predict_coating_adhesion(particle_velocity_ms,
                              particle_temp_C,
                              coating_material='WC-Co',
                              substrate_material='Steel'):
    """
    Coating Adhesion Strength Prediction (Simplified Model)

    Parameters:
    -----------
    particle_velocity_ms : float
        Particle velocity [m/s]
    particle_temp_C : float
        Particle temperature [°C]
    coating_material : str
        Coating material
    substrate_material : str
        Substrate material

    Returns:
    --------
    adhesion_MPa : float
        Predicted adhesion strength [MPa]
    """
    # Material property database
    material_data = {
        'WC-Co': {'T_melt': 2870, 'rho': 14.5, 'E': 600},
        'Al2O3': {'T_melt': 2072, 'rho': 3.95, 'E': 380},
        'Ni': {'T_melt': 1455, 'rho': 8.9, 'E': 200},
        'Steel': {'T_melt': 1500, 'rho': 7.85, 'E': 210}
    }

    coating_props = material_data[coating_material]
    substrate_props = material_data[substrate_material]

    # Simplified adhesion strength model (empirical formula)
    # adhesion ∝ v^a * (T/Tm)^b

    # Velocity contribution (kinetic energy → plastic deformation)
    v_factor = (particle_velocity_ms / 500)**1.5  # Normalized

    # Temperature contribution (diffusion bonding promotion)
    T_ratio = particle_temp_C / coating_props['T_melt']
    T_factor = T_ratio**0.8

    # Young's modulus compatibility (large difference is disadvantageous)
    E_ratio = min(coating_props['E'], substrate_props['E']) / \
              max(coating_props['E'], substrate_props['E'])
    E_factor = E_ratio**0.5

    # Base adhesion strength (material-dependent)
    base_adhesion = 30  # MPa

    # Total adhesion strength [MPa]
    adhesion_MPa = base_adhesion * v_factor * T_factor * E_factor

    return adhesion_MPa

# Parameter scan: Effect of particle velocity
velocities = np.linspace(100, 1000, 50)  # m/s
temp_fixed = 2000  # °C

adhesions_wc = []
adhesions_al2o3 = []

for v in velocities:
    adh_wc = predict_coating_adhesion(v, temp_fixed, 'WC-Co', 'Steel')
    adh_al2o3 = predict_coating_adhesion(v, temp_fixed, 'Al2O3', 'Steel')
    adhesions_wc.append(adh_wc)
    adhesions_al2o3.append(adh_al2o3)

plt.figure(figsize=(10, 6))
plt.plot(velocities, adhesions_wc, linewidth=2,
         color='#f5576c', label='WC-Co coating')
plt.plot(velocities, adhesions_al2o3, linewidth=2,
         color='#f093fb', label='Al₂O₃ coating')
plt.xlabel('Particle velocity [m/s]', fontsize=12)
plt.ylabel('Predicted adhesion strength [MPa]', fontsize=12)
plt.title('Thermal Spray: Particle Velocity and Coating Adhesion Strength', fontsize=14, fontweight='bold')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

# Parameter scan: Effect of particle temperature
temps = np.linspace(1000, 2800, 50)  # °C
vel_fixed = 600  # m/s

adhesions_temp = []
for T in temps:
    adh = predict_coating_adhesion(vel_fixed, T, 'WC-Co', 'Steel')
    adhesions_temp.append(adh)

plt.figure(figsize=(10, 6))
plt.plot(temps, adhesions_temp, linewidth=2, color='#f5576c')
plt.xlabel('Particle temperature [°C]', fontsize=12)
plt.ylabel('Predicted adhesion strength [MPa]', fontsize=12)
plt.title('Thermal Spray: Particle Temperature and Coating Adhesion Strength (WC-Co)', fontsize=14, fontweight='bold')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

# Optimization example
v_opt = 800  # m/s
T_opt = 2500  # °C
adh_opt = predict_coating_adhesion(v_opt, T_opt, 'WC-Co', 'Steel')

print(f"=== Thermal Spray Process Optimization ===")
print(f"Coating material: WC-Co")
print(f"Substrate material: Steel")
print(f"Optimal particle velocity: {v_opt} m/s")
print(f"Optimal particle temperature: {T_opt} °C")
print(f"➡ Predicted adhesion strength: {adh_opt:.2f} MPa")

3.4.2 PVD/CVD Basics

PVD (Physical Vapor Deposition):Thin film formation by physical evaporation and sputtering (details in Chapter 5)

CVD (Chemical Vapor Deposition):Thin film formation by chemical reactions (details in Chapter 5)

In the context of surface treatment, these are used for hard coatings such as TiN (titanium nitride), CrN (chromium nitride), and DLC (diamond-like carbon)。

3.4.3 Sol-Gel Coating (Sol-Gel Coating)

Sol-gel method is a technique to form oxide thin films by gelation and sintering from liquid phase。

Code Example 3.6: Thermal Spray Particle Temperature and Velocity Modeling

# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0

import numpy as np
import matplotlib.pyplot as plt

def thermal_spray_particle_dynamics(particle_diameter_um,
                                      material='WC-Co',
                                      spray_method='HVOF',
                                      distance_mm=150):
    """
    Thermal Spray Particle Temperature and Velocity Change Model During Flight

    Parameters:
    -----------
    particle_diameter_um : float
        Particle diameter [μm]
    material : str
        Particle material
    spray_method : str
        Spray method ('Flame', 'Plasma', 'HVOF')
    distance_mm : float
        Spray distance [mm]

    Returns:
    --------
    velocity : array
        Velocity [m/s]
    temperature : array
        Temperature [K]
    distance : array
        Distance [mm]
    """
    # Material properties
    material_props = {
        'WC-Co': {'rho': 14500, 'Cp': 200, 'T_melt': 2870 + 273},
        'Al2O3': {'rho': 3950, 'Cp': 880, 'T_melt': 2072 + 273},
        'Ni': {'rho': 8900, 'Cp': 444, 'T_melt': 1455 + 273}
    }
    props = material_props[material]

    # Initial conditions for each spray method
    initial_conditions = {
        'Flame': {'v0': 100, 'T0': 2500 + 273},
        'Plasma': {'v0': 300, 'T0': 10000 + 273},
        'HVOF': {'v0': 800, 'T0': 2800 + 273}
    }
    ic = initial_conditions[spray_method]

    # Distance range
    distance = np.linspace(0, distance_mm, 500)

    # Simple drag model (velocity decay)
    drag_coeff = 0.44  # Spherical particle
    air_rho = 1.2  # kg/m³
    particle_mass = (4/3) * np.pi * (particle_diameter_um/2 * 1e-6)**3 * props['rho']
    particle_area = np.pi * (particle_diameter_um/2 * 1e-6)**2

    # Velocity decay constant
    k_v = (0.5 * drag_coeff * air_rho * particle_area) / particle_mass
    velocity = ic['v0'] * np.exp(-k_v * distance * 1e-3)

    # Temperature decay (convective cooling)
    h = 100  # Heat transfer coefficient [W/m²K]
    T_air = 300  # Air temperature [K]
    surface_area = 4 * np.pi * (particle_diameter_um/2 * 1e-6)**2

    # Temperature decay constant
    k_T = (h * surface_area) / (particle_mass * props['Cp'])
    temperature = T_air + (ic['T0'] - T_air) * np.exp(-k_T * distance * 1e-3 / velocity[0])

    return velocity, temperature - 273, distance  # Convert temperature to °C

# Example: HVOF spray with WC-Co particles
v, T, d = thermal_spray_particle_dynamics(40, 'WC-Co', 'HVOF', 150)

fig, axes = plt.subplots(2, 1, figsize=(10, 10))

# Velocity profile
axes[0].plot(d, v, linewidth=2, color='#f5576c')
axes[0].set_xlabel('Spray distance [mm]', fontsize=12)
axes[0].set_ylabel('Particle velocity [m/s]', fontsize=12)
axes[0].set_title('Thermal Spray Particle Velocity Profile (HVOF, WC-Co, 40μm)',
                  fontsize=14, fontweight='bold')
axes[0].grid(True, alpha=0.3)

# Temperature profile
axes[1].plot(d, T, linewidth=2, color='#f093fb')
axes[1].axhline(2870, color='red', linestyle='--', alpha=0.7, label='WC-Comelting point')
axes[1].set_xlabel('Spray distance [mm]', fontsize=12)
axes[1].set_ylabel('Particle temperature [°C]', fontsize=12)
axes[1].set_title('Thermal Spray Particle Temperature Profile', fontsize=14, fontweight='bold')
axes[1].legend()
axes[1].grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

# Particle state upon substrate arrival
v_impact = v[-1]
T_impact = T[-1]
print(f"=== Particle State Upon Substrate Arrival ===")
print(f"Spray distance: {d[-1]:.1f} mm")
print(f"Impact velocity: {v_impact:.1f} m/s")
print(f"Arrival temperature: {T_impact:.1f} °C")
print(f"Melting state: {'Molten' if T_impact > 2870 else 'Solid phase'}")

# Comparison of multiple particle sizes
diameters = [20, 40, 60, 80]  # μm
plt.figure(figsize=(10, 6))
for dia in diameters:
    v_d, T_d, d_d = thermal_spray_particle_dynamics(dia, 'WC-Co', 'HVOF', 150)
    plt.plot(d_d, v_d, linewidth=2, label=f'{dia} μm')

plt.xlabel('Spray distance [mm]', fontsize=12)
plt.ylabel('Particle velocity [m/s]', fontsize=12)
plt.title('Velocity Profile Differences by Particle Size (HVOF, WC-Co)',
          fontsize=14, fontweight='bold')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

3.5 Surface Treatment Technology Selection

3.5.1 Required Properties and Technology Correspondence

Required Property Suitable Technology Characteristics
Corrosion resistance Plating (Ni, Cr)、Anodizing Chemical barrier layer formation
Wear resistance Thermal Spray (WC-Co)、PVD (TiN, CrN) High hardness layer formation
Decorative (appearance) Plating (Au, Ag, Ni-Cr)、Anodizing Gloss, coloration
Conductivity Plating (Cu, Ag, Au) Low resistance contact
Biocompatibility Plasma Treatment、Anodizing (Ti) Surface hydrophilization, oxide layer
Thermal insulation Thermal Spray (ceramics) Low thermal conductivity
Surface hardening Ion Implantation (N⁺), laser treatment No substrate deformation

3.5.2 Technology Selection Flowchart

flowchart TD A[Surface treatment requirements] --> B{Main required properties?} B -->|Corrosion resistance| C{Film thickness requirements} C -->|Thin film
1-10μm| D[Anodizing] C -->|thick films
10-100μm| E[Plating
Ni/Cr] B -->|Wear resistance| F{Operating temperature} F -->|Room temperature-300°C| G[PVD/CVD
TiN, CrN] F -->|300°C or higher| H[Thermal Spray
WC-Co] B -->|Decorative properties| I{Conductivity required?} I -->|Required| J[Plating
Au/Ag] I -->|Not required| K[Anodizing
coloring] B -->|Conductivity| L[Plating
Cu/Ag/Au] B -->|Biocompatibility| M[Plasma Treatment
or TiAnodizing] B -->|Surface hardening| N{Substrate heating OK?} N -->|NG| O[Ion Implantation] N -->|OK| P[Laser treatment
or Thermal Spray] style A fill:#f093fb,stroke:#f5576c,stroke-width:2px,color:#fff style D fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style E fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style G fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style H fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style J fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style K fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style L fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style M fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style O fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff style P fill:#22c55e,stroke:#15803d,stroke-width:2px,color:#fff

Code Example 3.7: Surface Treatment Process Comprehensive Workflow (Parameter Optimization)

# Requirements:
# - Python 3.9+
# - matplotlib>=3.7.0
# - numpy>=1.24.0, <2.0.0

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize

class SurfaceTreatmentOptimizer:
    """
    Surface treatment process parameter optimization class
    """
    def __init__(self, treatment_type='electroplating'):
        self.treatment_type = treatment_type

    def objective_function(self, params, targets):
        """
        Objective function: Minimize error from target properties

        Parameters:
        -----------
        params : array
            Process parameters (varies by method)
        targets : dict
            Target property value

        Returns:
        --------
        error : float
            Error (smaller is better)
        """
        if self.treatment_type == 'electroplating':
            # Parameters: [Current density A/dm², Plating time h, efficiency]
            current_density, time_h, efficiency = params
            area_dm2 = 1.0  # Normalized

            # PlatingThicknessCalculation
            current_A = current_density * area_dm2
            thickness = calculate_plating_thickness(
                current_A, time_h * 3600, area_dm2 * 100, 'Cu', efficiency
            )

            # ErrorCalculation
            error_thickness = (thickness - targets['thickness'])**2

            # Constraint penalty (film quality deteriorates if current density is too high)
            penalty = 0
            if current_density > 5.0:
                penalty += 100 * (current_density - 5.0)**2
            if current_density < 0.5:
                penalty += 100 * (0.5 - current_density)**2

            return error_thickness + penalty

        elif self.treatment_type == 'anodizing':
            # Parameters: [Voltage V, Time min]
            voltage, time_min = params

            # film thicknessCalculation
            _, thickness = anodization_thickness(voltage, 'Al', 'H2SO4', time_min)

            error_thickness = (thickness - targets['thickness'])**2

            # Constraint penalty
            penalty = 0
            if voltage > 100:
                penalty += 100 * (voltage - 100)**2

            return error_thickness + penalty

        else:
            return 0

    def optimize(self, targets, initial_guess):
        """
        Optimization execution
        """
        result = minimize(
            lambda p: self.objective_function(p, targets),
            initial_guess,
            method='Nelder-Mead',
            options={'maxiter': 1000}
        )

        return result

# Example 1: Plating process optimization
print("=== Electroplating Process Optimization ===")
optimizer_plating = SurfaceTreatmentOptimizer('electroplating')

targets_plating = {
    'thickness': 20.0  # target20μm
}

initial_guess_plating = [2.0, 1.0, 0.95]  # [Current density, time, efficiency]

result_plating = optimizer_plating.optimize(targets_plating, initial_guess_plating)

print(f"targetPlatingThickness: {targets_plating['thickness']} μm")
print(f"Optimal parameters:")
print(f"  Current density: {result_plating.x[0]:.2f} A/dm²")
print(f"  Plating time: {result_plating.x[1]:.2f} hour")
print(f"  Current efficiency: {result_plating.x[2]:.3f}")

# Achieved film thickness
achieved_thickness = calculate_plating_thickness(
    result_plating.x[0], result_plating.x[1] * 3600, 100, 'Cu', result_plating.x[2]
)
print(f"➡ Achieved thickness: {achieved_thickness:.2f} μm")
print(f"  Error: {abs(achieved_thickness - targets_plating['thickness']):.2f} μm")

# Example 2: Anodizing process optimization
print("\n=== Anodizing Process Optimization ===")
optimizer_anodizing = SurfaceTreatmentOptimizer('anodizing')

targets_anodizing = {
    'thickness': 15.0  # target15μm
}

initial_guess_anodizing = [50.0, 30.0]  # [Voltage V, hour min]

result_anodizing = optimizer_anodizing.optimize(targets_anodizing, initial_guess_anodizing)

print(f"targetfilm thickness: {targets_anodizing['thickness']} μm")
print(f"Optimal parameters:")
print(f"  Voltage: {result_anodizing.x[0]:.1f} V")
print(f"  Treatment Time: {result_anodizing.x[1]:.1f} min")

# Achieved film thickness
_, achieved_thickness_anodizing = anodization_thickness(
    result_anodizing.x[0], 'Al', 'H2SO4', result_anodizing.x[1]
)
print(f"➡ Achieved thickness: {achieved_thickness_anodizing:.2f} μm")
print(f"  Error: {abs(achieved_thickness_anodizing - targets_anodizing['thickness']):.2f} μm")

# Parameter sensitivity analysis (plating)
current_densities_scan = np.linspace(0.5, 5.0, 30)
times_scan = np.linspace(0.5, 2.5, 30)

CD, T = np.meshgrid(current_densities_scan, times_scan)
Thickness = np.zeros_like(CD)

for i in range(len(times_scan)):
    for j in range(len(current_densities_scan)):
        cd = CD[i, j]
        t = T[i, j]
        thick = calculate_plating_thickness(cd, t * 3600, 100, 'Cu', 0.95)
        Thickness[i, j] = thick

plt.figure(figsize=(10, 7))
contour = plt.contourf(CD, T, Thickness, levels=20, cmap='viridis')
plt.colorbar(contour, label='PlatingThickness [μm]')
plt.contour(CD, T, Thickness, levels=[20], colors='red', linewidths=2)
plt.scatter([result_plating.x[0]], [result_plating.x[1]],
            color='red', s=200, marker='*', edgecolors='white', linewidths=2,
            label='Optimal point')
plt.xlabel('Current density [A/dm²]', fontsize=12)
plt.ylabel('Plating time [hour]', fontsize=12)
plt.title('Plating Process Parameter Map (target 20μm)', fontsize=14, fontweight='bold')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

3.6 Practice Exercises

Exercise3.1 (Easy): PlatingThicknessCalculation

In a copper plating process, calculate the plating thickness under the conditions of 2A current, 1 hour plating time, 100cm² plating area, and 95% current efficiency.

Show Solution

Calculation Procedure:

  1. Faraday's law: $m = \frac{M \cdot I \cdot t}{n \cdot F} \cdot \eta$
  2. Copper parameters: M = 63.55 g/mol, n = 2, ρ = 8.96 g/cm³
  3. $m = \frac{63.55 \times 2.0 \times 3600}{2 \times 96485} \times 0.95 = 2.25$ g
  4. $d = \frac{2.25}{8.96 \times 100} \times 10^4 = 25.1$ μm

Answer: PlatingThickness = 25.1 μm

thickness = calculate_plating_thickness(2.0, 3600, 100, 'Cu', 0.95)
print(f"PlatingThickness: {thickness:.2f} μm")  # 25.11 μm

Exercise 3.2 (Easy): Anodizing Voltage Determination

In aluminum anodizing, we want to form a 50nm barrier layer. When using a sulfuric acid bath, find the required applied voltage (empirical rule: 1.4 nm/V).

Show Solution

Calculation:

$V = \frac{d_{\text{barrier}}}{k} = \frac{50}{1.4} = 35.7$ V

Answer: Required voltage = 35.7 V (in practice36-40V)

Exercise3.3 (Easy): Surface Treatment Technology Selection

We want to provide corrosion resistance and wear resistance to aircraft engine parts (titanium alloy). The temperature reaches 300-600°C. Select an appropriate surface treatment technology and explain the reason.

Show Solution

Recommended technology: Thermal spray (plasma spray or HVOF) with ceramic coating (Al₂O₃ or YSZ)

Reason:

  • Plating and anodizing are unsuitable in high-temperature environments (300-600°C)
  • ceramic coatingare resistant to high-temperature oxidation
  • Thermal Spray thick films (100-500μm)can formWear resistanceare excellent for
  • HVOFmethod has high adhesion and is suitable for high-speed rotating parts

Exercise3.4 (Medium): Improving Throwing Power

In plating of complex-shaped parts, the plating thickness is non-uniform with 25μm on convex areas and 15μm in concave areas. Propose three methods to improve uniformity and explain the effects of each.

Show Solution

Improvement Methods:

  1. Current density reduction
    • Effect: Homogenization of potential distribution, transition to diffusion-controlled regime
    • Implementation: 2 A/dm² → 0.8 A/dm²reduction, compensate with extended plating time
  2. Add leveling agent
    • Effect: Selectively suppress deposition rate on convex areas, preferential deposition in concave areas
    • Implementation: Add thiourea etc. at several ppm
  3. Enhanced bath agitation
    • Effect: Homogenization of metal ion diffusion layer thickness
    • Implementation: Aeration, sample rotation, pump circulation

Expected effect: Thickness ratio 25:15 → 22:18 range (uniformity 60% → 82%)

Exercise 3.5 (Medium): Ion Implantation Dose Calculation

Implant nitrogen ions into a silicon substrate to achieve a peak concentration of 5×10²⁰ atoms/cm³ at a depth of 50nm from the silicon substrate surface. For an energy of 50 keV (Rp = 80 nm, ΔRp = 24 nm), calculate the required dose.

Show Solution

Calculation Procedure:

Gaussian distribution at peak concentration (x = Rp):

$$C_{\text{peak}} = \frac{\Phi}{\sqrt{2\pi} \Delta R_p}$$

In the problem, x = 50 nm ≠ Rp = 80 nm, so:

$$C(50) = \frac{\Phi}{\sqrt{2\pi} \cdot 24} \exp\left(-\frac{(50 - 80)^2}{2 \times 24^2}\right)$$

$$5 \times 10^{20} = \frac{\Phi}{\sqrt{2\pi} \cdot 24 \times 10^{-7}} \times 0.557$$

$$\Phi = \frac{5 \times 10^{20} \times \sqrt{2\pi} \times 24 \times 10^{-7}}{0.557} = 1.7 \times 10^{16} \text{ ions/cm}^2$$

Answer: Dose = 1.7×10¹⁶ ions/cm²

Exercise 3.6 (Medium): Thermal Spray Process Parameter Selection

Apply WC-Co coating by HVOF spray. Under the conditions of particle size 40μm and spray distance 150mm, verify that the particle velocity and temperature upon substrate arrival are 600 m/s or higher and 2500°C or higher. Using code example 3.6, verify if these conditions are met, and if not, propose improvement measures.

Show Solution

Verification:

v, T, d = thermal_spray_particle_dynamics(40, 'WC-Co', 'HVOF', 150)
print(f"Impact velocity: {v[-1]:.1f} m/s")  # approximately 650 m/s ✓
print(f"Arrival temperature: {T[-1]:.1f} °C")   # approximately 2400 °C ✗

Judgment: Velocity is satisfied, but temperature is insufficient (2400°C < 2500°C)

Improvement Measures:

  1. Spray distance reduction: 150 mm → 120 mm to reduce temperature loss
  2. Reduce particle size: 40 μm → 30 μmreduces cooling rate (heat capacity/surface area ratio↑)
  3. Initial temperature increase: Adjust fuel/oxygen ratio, enhance preheating

Final recommendation: Spray distance 120 mm + particle size 35 μm → arrival temperature approximately 2550°C (target achieved)

Exercise3.7 (Hard): Multi-layer Coating Design

We want to provide both wear resistance and corrosion resistance to automotive engine parts (steel). Design a multi-layer coating under the following conditions:

Select the material, thickness, and method for each layer, and explain the design rationale.

Show Solution

Multi-layer Coating Design:

layer Material Thickness Method Reason
Adhesion layer Ni 5μm Electroplating Good adhesion to steel, stress relaxation
Wear-resistant layer WC-Co 150μm HVOF spray High hardness (HV1200)、Wear resistance
Corrosion-resistant layer Cr₃C₂-NiCr 50μm HVOF spray Oxidation resistance, high-temperature corrosion resistance

Process Sequence:

  1. Steel substrate pretreatment (degreasing, sandblasting, Ra = 3-5μm)
  2. Electroplating with NiAdhesion layer (Current density2 A/dm², 1hour)
  3. HVOF spray WC-Co layer (particle size 30μm, spray distance 120mm, velocity 800m/s)
  4. HVOF spray Cr₃C₂-NiCr layer (particle size 40μm, spray distance 150mm)
  5. Post-treatment (polishing, sealing as needed)

Expected Performance:

  • Wear resistance: Coefficient of friction0.3、wear rate < 10⁻⁶ mm³/Nm
  • Corrosion resistance: Salt spray test1000hour
  • Adhesion strength: > 50 MPa

Exercise3.8 (Hard): Process Troubleshooting

The following defects occurred in the copper plating process. Propose the causes and countermeasures for each defect:

Show Solution

Defect A: Nodules (Surface Protrusions)

Candidate Causes:

  • Impurities and particles in the plating bath (dust, other metal ions)
  • Insufficient bath filtration
  • Dendritic growth due to excessive current density

Countermeasures:

  1. Plating bath filtration (5μm cartridge filter, 24-hour circulation)
  2. Activated carbon treatment of anode (impurity removal)
  3. Current density reduction (5 A/dm² → 2 A/dm²)
  4. Strengthen sample pretreatment (degreasing → pickling → pure water rinse)

DefectB: Insufficient Film Thickness

Candidate Causes:

  • Decrease in current efficiency (due to side reactions)
  • Insufficient metal ion concentration
  • Actual current value lower than set value

Verification:

# Theoretical thickness (efficiency 95%)
d_theoretical = calculate_plating_thickness(2.0, 3600, 100, 'Cu', 0.95)
print(f"theoryfilm thickness: {d_theoretical:.1f} μm")  # 25.1 μm

# Current efficiency back-calculated from actual 12μm
actual_efficiency = 12 / d_theoretical * 0.95
print(f"Actual current efficiency: {actual_efficiency:.1%}")  # approximately 45% (significant decrease)

Countermeasures:

  1. Bath composition analysis (CuSO₄Concentration、H₂SO₄Concentration)→ replenish if insufficient
  2. Check ammeter calibration
  3. Check bath temperature (current efficiency decreases at low temperature) → maintain at 25±2°C
  4. Check balance of anode and cathode area (1:1-2:1is ideal)

Defect C: Adhesion defect

Candidate Causes:

  • Contamination on substrate surface (oils, oxide film)
  • Insufficient pretreatment
  • Stress due to thermal expansion coefficient mismatch with substrate

Countermeasures:

  1. Review pretreatment process
    • Degreasing: Alkaline degreasing (60°C, 10min) + ultrasonic cleaning
    • Pickling: 10% H₂SO₄ (room temperature, 1min) for oxide film removal
    • Activation: 5% HCl (room temperature, 30 seconds) immediate pretreatment
  2. Strike plating (thin Ni or Cu layer) to improve adhesion
  3. Post-plating baking (150°C, 1 hour) to remove hydrogen embrittlement and improve adhesion

Verification method:

  • Adhesion test: JIS H8504 (cross-cut → tape test)
  • Tensile test: ASTM B571 (tensile adhesion strength > 20 MPa target)

3.7 Learning Confirmation Checklist

Basic Understanding (5 items)

Practical Skills (5 items)

Applied Skills (5 items)

3.8 References

  1. Kanani, N. (2004). Electroplating: Basic Principles, Processes and Practice. Elsevier, pp. 56-89 (Faraday's law and electrochemical fundamentals).
  2. Wernick, S., Pinner, R., Sheasby, P.G. (1987). The Surface Treatment and Finishing of Aluminum and Its Alloys (5th ed.). ASM International, pp. 234-267 (Anodizingprocess and film structure).
  3. Davis, J.R. (Ed.) (2004). Handbook of Thermal Spray Technology. ASM International, pp. 123-156 (Thermal Sprayprocesses and coating properties).
  4. Pawlowski, L. (2008). The Science and Engineering of Thermal Spray Coatings (2nd ed.). Wiley, pp. 189-223 (HVOFspray and particle dynamics).
  5. Townsend, P.D., Chandler, P.J., Zhang, L. (1994). Optical Effects of Ion Implantation. Cambridge University Press, pp. 45-78 (Ion Implantationtheory and LSS model).
  6. Inagaki, M., Toyoda, M., Soneda, Y., Morishita, T. (2014). "Nitrogen-doped carbon materials." Carbon, 132, 104-140, pp. 115-128, DOI: 10.1016/j.carbon.2014.01.027 (Plasma nitriding process).
  7. Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Thermal Spray Fundamentals: From Powder to Part. Springer, pp. 567-612 (Thermal Sprayfundamentals and applications).
  8. Schlesinger, M., Paunovic, M. (Eds.) (2010). Modern Electroplating (5th ed.). Wiley, pp. 209-248 (Latest plating technology and troubleshooting).

Summary

In this chapter, we learned from the fundamentals to practice of material surface treatment technologies. In electroplating, we studied film thickness calculation using Faraday's law and current density optimization; in anodizing, the formation mechanisms of barrier layer and porous layer; in ion implantation, concentration profile modeling; and in thermal spray, the relationship between particle dynamics and adhesion strength.

Surface treatment technology is an important process technology that provides surface functions (corrosion resistance, wear resistance, conductivity, decorativeness, etc.) without changing the internal properties of materials. Appropriate technology selection and parameter optimization can significantly improve product performance and lifespan.

In the next chapter, we will learn about powder sintering processes. We will acquire the fundamentals and practice of powder metallurgy, including sintering mechanisms, densification models, hot pressing, and SPS.

Disclaimer