English | 日本語

Chapter 5: Applications and Future Perspectives

Nanoelectronics, Nanomedicine, Energy, and AI-Driven Discovery

Intermediate Level 25-30 minutes Applications, AI, Sustainability

Learning Objectives

  • Understand nanomaterial applications in electronics and computing
  • Learn nanomedicine applications: drug delivery, imaging, and therapeutics
  • Explore energy applications: batteries, solar cells, and catalysis
  • Discover how AI and machine learning accelerate nanomaterial discovery
  • Consider safety, sustainability, and regulatory aspects of nanotechnology

5.1 Nanoelectronics and Computing

5.1.1 Quantum Dot Displays (QLED)

Quantum dots have revolutionized display technology. QLED displays use QDs as color converters or emitters, offering advantages over traditional LCDs:

Property LCD OLED QLED
Color gamut 72% NTSC 100% DCI-P3 >100% DCI-P3
Peak brightness 300-500 nits 800-1500 nits 1500-4000 nits
Lifespan 60,000+ hours 30,000 hours 60,000+ hours
Burn-in risk None Possible None

5.1.2 Carbon Nanotube Electronics

Carbon nanotubes offer exceptional electrical properties for next-generation electronics:

5.1.3 Graphene Electronics

Graphene Properties for Electronics

Graphene offers electron mobility of 200,000 cm²/(V·s) at room temperature, thermal conductivity of ~5000 W/(m·K), and mechanical strength of 130 GPa. Applications include high-frequency transistors, interconnects, transparent electrodes, and sensors.

5.2 Nanomedicine

5.2.1 Drug Delivery Systems

Nanoparticle-based drug delivery offers several advantages:

Nanocarrier Type Size Range Drug Type Applications
Liposomes 50-200 nm Hydrophilic/lipophilic Doxil (cancer), Onpattro (siRNA)
Polymeric NPs 10-200 nm Various Abraxane (paclitaxel)
Lipid NPs 50-100 nm mRNA, siRNA COVID-19 mRNA vaccines
Inorganic NPs 5-50 nm Imaging agents Iron oxide MRI contrast

Python Example: Drug Release Kinetics Modeling


import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

def zero_order(t, k0, M_total):
    """Zero-order release: M(t) = k0 * t"""
    return np.minimum(k0 * t, M_total)

def first_order(t, k1, M_total):
    """First-order release: M(t) = M_total * (1 - exp(-k1*t))"""
    return M_total * (1 - np.exp(-k1 * t))

def higuchi(t, k_H, M_total):
    """Higuchi model: M(t) = k_H * sqrt(t)"""
    return np.minimum(k_H * np.sqrt(t), M_total)

def korsmeyer_peppas(t, k, n, M_total):
    """
    Korsmeyer-Peppas model: M(t)/M_total = k * t^n

    n = 0.5: Fickian diffusion (spheres)
    0.5 < n < 1: Anomalous transport
    n = 1: Case II transport (zero-order)
    """
    return np.minimum(M_total * k * t**n, M_total)

# Simulate drug release from nanoparticles
time = np.linspace(0, 48, 200)  # hours
M_total = 100  # Total drug loading (%)

# Different release mechanisms
mechanisms = {
    'Burst + sustained': lambda t: 30*(1-np.exp(-t)) + 70*korsmeyer_peppas(t, 0.08, 0.5, 1)/100*70,
    'Sustained release': lambda t: korsmeyer_peppas(t, 0.15, 0.45, 100),
    'Triggered release': lambda t: np.where(t < 12, 5*(1-np.exp(-t/2)),
                                            5*(1-np.exp(-6)) + 95*(1-np.exp(-(t-12)/4))),
    'Zero-order': lambda t: zero_order(t, 2.1, 100),
}

plt.figure(figsize=(12, 5))

# Plot 1: Release profiles
plt.subplot(1, 2, 1)
for name, func in mechanisms.items():
    release = func(time)
    plt.plot(time, release, linewidth=2, label=name)

plt.xlabel('Time (hours)')
plt.ylabel('Cumulative Drug Release (%)')
plt.title('Drug Release Kinetics from Nanocarriers')
plt.legend()
plt.grid(True, alpha=0.3)
plt.xlim(0, 48)
plt.ylim(0, 105)

# Plot 2: Release rate
plt.subplot(1, 2, 2)
dt = time[1] - time[0]
for name, func in mechanisms.items():
    release = func(time)
    rate = np.gradient(release, dt)
    plt.plot(time, rate, linewidth=2, label=name)

plt.xlabel('Time (hours)')
plt.ylabel('Release Rate (%/hour)')
plt.title('Drug Release Rate')
plt.legend()
plt.grid(True, alpha=0.3)
plt.xlim(0, 48)

plt.tight_layout()
plt.savefig('drug_release.png', dpi=150)
plt.show()

# Analyze release mechanism
print("\nKorsmeyer-Peppas Exponent (n) Interpretation:")
print("-" * 50)
print("n = 0.43: Fickian diffusion (spheres)")
print("0.43 < n < 0.85: Anomalous transport")
print("n = 0.85: Case-II transport (zero-order)")
print("n > 0.85: Super Case-II transport")
        

5.2.2 Diagnostic Imaging

Nanomaterials enhance various imaging modalities:

5.3 Energy Applications

5.3.1 Batteries and Supercapacitors

Nanomaterials address key limitations in energy storage:

Nanomaterial Application Benefit
Si nanoparticles Li-ion anode 10x capacity vs graphite, manages volume expansion
Graphene Supercapacitor electrode High surface area (2630 m²/g theoretical)
LiFePO4 NPs Li-ion cathode Faster Li+ diffusion, better rate capability
MXenes Supercapacitor High volumetric capacitance, fast ion transport

5.3.2 Solar Cells

Nanomaterials enable new solar cell architectures:

5.3.3 Catalysis for Clean Energy

Python Example: Electrocatalyst Performance Comparison


import numpy as np
import matplotlib.pyplot as plt

def tafel_equation(eta, j0, b):
    """
    Tafel equation: j = j0 * 10^(eta/b)

    Parameters:
    -----------
    eta : array
        Overpotential (mV)
    j0 : float
        Exchange current density (mA/cm²)
    b : float
        Tafel slope (mV/dec)

    Returns:
    --------
    array : Current density (mA/cm²)
    """
    return j0 * 10**(eta / b)

def mass_activity(j, loading_mg_cm2):
    """Calculate mass activity (A/mg)."""
    return j / loading_mg_cm2

# Electrocatalyst data for oxygen reduction reaction (ORR)
catalysts = {
    'Pt/C (bulk)': {'j0': 1e-3, 'b': 60, 'loading': 0.4, 'color': 'gray'},
    'Pt NPs (3nm)': {'j0': 5e-3, 'b': 55, 'loading': 0.1, 'color': 'blue'},
    'Pt-Ni alloy': {'j0': 1e-2, 'b': 50, 'loading': 0.05, 'color': 'green'},
    'Pt-skin surface': {'j0': 2e-2, 'b': 45, 'loading': 0.02, 'color': 'red'},
}

overpotential = np.linspace(0, 400, 100)  # mV

fig, axes = plt.subplots(1, 3, figsize=(15, 5))

# Plot 1: Tafel plots
ax1 = axes[0]
for name, props in catalysts.items():
    j = tafel_equation(overpotential, props['j0'], props['b'])
    ax1.semilogy(overpotential, j, color=props['color'], linewidth=2, label=name)

ax1.set_xlabel('Overpotential (mV)')
ax1.set_ylabel('Current Density (mA/cm²)')
ax1.set_title('ORR Tafel Plots')
ax1.legend()
ax1.grid(True, alpha=0.3)
ax1.set_xlim(0, 400)

# Plot 2: Mass activity at 0.9 V (300 mV overpotential)
ax2 = axes[1]
names = list(catalysts.keys())
ma_values = []
for name, props in catalysts.items():
    j = tafel_equation(300, props['j0'], props['b'])
    ma = mass_activity(j, props['loading'])
    ma_values.append(ma)

colors = [catalysts[n]['color'] for n in names]
bars = ax2.bar(range(len(names)), ma_values, color=colors, alpha=0.7)
ax2.set_xticks(range(len(names)))
ax2.set_xticklabels([n.split()[0] for n in names], rotation=45, ha='right')
ax2.set_ylabel('Mass Activity (A/mg_Pt)')
ax2.set_title('Mass Activity at η = 300 mV')
ax2.grid(True, alpha=0.3, axis='y')

# Plot 3: Cost-performance comparison
ax3 = axes[2]
pt_cost = 30  # $/g (approximate)
performance_per_cost = [ma / (props['loading'] * pt_cost)
                        for name, props in catalysts.items()
                        for ma in [mass_activity(tafel_equation(300, props['j0'], props['b']),
                                                  props['loading'])]]

ax3.bar(range(len(names)), performance_per_cost, color=colors, alpha=0.7)
ax3.set_xticks(range(len(names)))
ax3.set_xticklabels([n.split()[0] for n in names], rotation=45, ha='right')
ax3.set_ylabel('Performance/Cost (A/$)')
ax3.set_title('Cost-Normalized Performance')
ax3.grid(True, alpha=0.3, axis='y')

plt.tight_layout()
plt.savefig('electrocatalyst_comparison.png', dpi=150)
plt.show()
        

5.4 AI-Driven Nanomaterial Discovery

Machine learning is accelerating nanomaterial design by predicting properties, optimizing synthesis conditions, and discovering new compositions.

flowchart LR subgraph Data["Data Sources"] A[Literature Mining] B[High-Throughput Experiments] C[Computational Databases] end subgraph ML["ML Models"] D[Property Prediction] E[Synthesis Optimization] F[Structure Generation] end subgraph Output["Outcomes"] G[New Materials] H[Optimized Processes] I[Design Rules] end A --> D B --> D C --> D D --> G E --> H F --> G D --> I

Python Example: ML for Nanoparticle Property Prediction


import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, r2_score

# Generate synthetic dataset: nanoparticle properties
np.random.seed(42)
n_samples = 500

# Features: size, composition ratios, synthesis temperature
size = np.random.uniform(2, 50, n_samples)  # nm
comp_A = np.random.uniform(0, 1, n_samples)  # fraction of element A
temp = np.random.uniform(100, 300, n_samples)  # °C

# Target: bandgap (eV) - synthetic relationship
# Bandgap increases as size decreases (quantum confinement)
# Bandgap depends on composition
# Temperature affects crystallinity
bandgap = (1.5 + 3.0 / size +
           0.5 * comp_A +
           0.001 * temp +
           np.random.normal(0, 0.1, n_samples))

# Create feature matrix
X = np.column_stack([size, comp_A, temp])
y = bandgap

# Train/test split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

# Train Random Forest model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Predictions
y_pred = model.predict(X_test)

# Evaluate
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

# Visualization
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

# Plot 1: Parity plot
ax1 = axes[0, 0]
ax1.scatter(y_test, y_pred, alpha=0.6, edgecolor='k', linewidth=0.5)
ax1.plot([y.min(), y.max()], [y.min(), y.max()], 'r--', linewidth=2)
ax1.set_xlabel('True Bandgap (eV)')
ax1.set_ylabel('Predicted Bandgap (eV)')
ax1.set_title(f'ML Prediction Performance\nMAE={mae:.3f} eV, R²={r2:.3f}')
ax1.grid(True, alpha=0.3)

# Plot 2: Feature importance
ax2 = axes[0, 1]
feature_names = ['Size (nm)', 'Composition A', 'Temperature (°C)']
importances = model.feature_importances_
ax2.barh(feature_names, importances, color='steelblue', alpha=0.7)
ax2.set_xlabel('Feature Importance')
ax2.set_title('Random Forest Feature Importance')
ax2.grid(True, alpha=0.3, axis='x')

# Plot 3: Size effect prediction
ax3 = axes[1, 0]
sizes_pred = np.linspace(2, 50, 100)
X_pred = np.column_stack([sizes_pred,
                          np.full(100, 0.5),  # Fixed composition
                          np.full(100, 200)])  # Fixed temperature
bandgaps_pred = model.predict(X_pred)

ax3.plot(sizes_pred, bandgaps_pred, 'b-', linewidth=2, label='ML prediction')
ax3.scatter(X_test[:, 0], y_test, alpha=0.3, label='Test data')
ax3.set_xlabel('Nanoparticle Size (nm)')
ax3.set_ylabel('Bandgap (eV)')
ax3.set_title('Size-Dependent Bandgap Prediction')
ax3.legend()
ax3.grid(True, alpha=0.3)

# Plot 4: Composition screening
ax4 = axes[1, 1]
compositions = np.linspace(0, 1, 50)
sizes_screen = [5, 10, 20]
colors = ['red', 'green', 'blue']

for s, c in zip(sizes_screen, colors):
    X_screen = np.column_stack([np.full(50, s), compositions, np.full(50, 200)])
    bg_screen = model.predict(X_screen)
    ax4.plot(compositions, bg_screen, color=c, linewidth=2, label=f'{s} nm')

ax4.set_xlabel('Composition A Fraction')
ax4.set_ylabel('Predicted Bandgap (eV)')
ax4.set_title('Composition Screening')
ax4.legend()
ax4.grid(True, alpha=0.3)

plt.tight_layout()
plt.savefig('ml_nanomaterial.png', dpi=150)
plt.show()

print("\nML Model Performance:")
print("-" * 40)
print(f"Mean Absolute Error: {mae:.4f} eV")
print(f"R² Score: {r2:.4f}")
print(f"\nMost Important Feature: {feature_names[np.argmax(importances)]}")
        

5.5 Safety, Sustainability, and Regulations

5.5.1 Nanotoxicology

Understanding nanomaterial toxicity is crucial for safe development:

5.5.2 Sustainable Nanomaterials

Green Nanotechnology Principles

Key strategies for sustainable nanomaterials include: (1) Use of non-toxic precursors and solvents; (2) Energy-efficient synthesis methods; (3) Design for biodegradability or recyclability; (4) Life-cycle assessment for environmental impact; (5) Safe-by-design approaches from early development.

5.5.3 Regulatory Frameworks

Region Framework Key Requirements
EU REACH, Novel Foods Registration if >1 ton/year, specific nano provisions
USA EPA TSCA, FDA Case-by-case evaluation, significant new use rules
Japan Chemical Substances Control Law Voluntary reporting, safety guidelines

5.6 Future Perspectives

mindmap root((Nanomaterial Future)) Quantum Technologies Quantum computing materials Quantum sensors Quantum communication Sustainable Energy Next-gen batteries Green hydrogen catalysts CO2 conversion Personalized Medicine Theranostics Gene delivery Organ-on-chip AI Integration Autonomous labs Inverse design Self-optimizing synthesis

5.7 Summary

Key Takeaways

  • Electronics: QDs in displays, CNTs and graphene for next-gen transistors and interconnects
  • Medicine: Nanocarriers for drug delivery (mRNA vaccines), imaging contrast agents, theranostics
  • Energy: Nanostructured electrodes for batteries, QD/perovskite solar cells, nano-electrocatalysts
  • AI acceleration: ML for property prediction, synthesis optimization, and materials discovery
  • Responsibility: Nanotoxicology, life-cycle assessment, and regulatory compliance are essential

Exercises

Exercise 1: Application Selection

You need to develop a nanomaterial for cancer theranostics (combined therapy and diagnosis). What type of nanoparticle would you choose? Consider imaging modality, drug loading capability, targeting strategy, and biocompatibility.

Exercise 2: Sustainability Analysis

Compare the environmental impact of quantum dot synthesis using: (a) hot injection with toxic Cd precursors, (b) green synthesis of InP QDs, (c) carbon quantum dots from citric acid. Consider precursor toxicity, energy consumption, and product safety.

Exercise 3: ML Dataset Design

Design a dataset for ML prediction of nanoparticle catalytic activity. What features would you include? What target properties? How would you collect/generate the data? What ML model architecture would be appropriate?