This chapter introduces the basics of Deployment Basics. You will learn complete machine learning model lifecycle, Distinguish between deployment methods (batch, and Build inference APIs with Flask.
Learning Objectives
By reading this chapter, you will be able to:
- β Understand the complete machine learning model lifecycle
- β Distinguish between deployment methods (batch, real-time, edge)
- β Build inference APIs with Flask and FastAPI
- β Select appropriate model serialization formats
- β Implement practical image classification APIs
1.1 Deployment Fundamentals
Machine Learning Model Lifecycle
Machine learning models go through the following stages from development to production operation.
Deployment is the process of placing a trained model in an environment where actual users can access it and providing predictions.
Comparison of Deployment Methods
| Method | Characteristics | Latency | Use Cases |
|---|---|---|---|
| Batch Inference | Process large amounts of data periodically in bulk | Minutes to hours | Recommendations, report generation |
| Real-time Inference | Respond immediately to each request | Tens of ms to seconds | Web APIs, chatbots |
| Edge Inference | Execute locally on devices | A few ms | Mobile apps, IoT devices |
REST API Basics
For real-time inference, RESTful APIs are the most common approach.
# Basic API request flow
"""
1. Client β Server: POST /predict
{
"features": [5.1, 3.5, 1.4, 0.2]
}
2. Server Processing:
- Data validation
- Preprocessing
- Model inference
- Result formatting
3. Server β Client: 200 OK
{
"prediction": "setosa",
"confidence": 0.98
}
"""
1.2 Inference API with Flask
Flask Basic Setup
Flask is a lightweight Python web framework with a low learning curve.
# Requirements:
# - Python 3.9+
# - flask>=2.3.0
# app.py - Basic Flask application
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
return jsonify({
'status': 'healthy',
'version': '1.0.0'
})
@app.route('/predict', methods=['POST'])
def predict():
"""Prediction endpoint"""
data = request.get_json()
# Simple response (will be replaced with model inference later)
return jsonify({
'prediction': 'sample',
'input_received': data
})
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5000)
How to Run:
python app.py
# β Server starts at http://localhost:5000
# Test from another terminal
curl http://localhost:5000/health
Deploying scikit-learn Models
# Requirements:
# - Python 3.9+
# - joblib>=1.3.0
"""
Example: Deploying scikit-learn Models
Purpose: Demonstrate machine learning model training and evaluation
Target: Advanced
Execution time: 30-60 seconds
Dependencies: None
"""
# train_model.py - Model training and serialization
import joblib
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# Data preparation
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.2, random_state=42
)
# Model training
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Save model
joblib.dump(model, 'iris_model.pkl')
print(f"Model accuracy: {model.score(X_test, y_test):.3f}")
print("Model saved: iris_model.pkl")
Prediction with POST Requests
# Requirements:
# - Python 3.9+
# - flask>=2.3.0
# - joblib>=1.3.0
# - numpy>=1.24.0, <2.0.0
# flask_app.py - Complete inference API
from flask import Flask, request, jsonify
import joblib
import numpy as np
app = Flask(__name__)
# Load model (only once at startup)
model = joblib.load('iris_model.pkl')
class_names = ['setosa', 'versicolor', 'virginica']
@app.route('/predict', methods=['POST'])
def predict():
"""
Iris classification prediction
Request example:
{
"features": [5.1, 3.5, 1.4, 0.2]
}
"""
try:
# Get request data
data = request.get_json()
features = np.array(data['features']).reshape(1, -1)
# Prediction
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
# Format result
return jsonify({
'prediction': class_names[prediction],
'class_id': int(prediction),
'probabilities': {
class_names[i]: float(prob)
for i, prob in enumerate(probabilities)
}
})
except Exception as e:
return jsonify({'error': str(e)}), 400
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5000)
Testing:
curl -X POST http://localhost:5000/predict \
-H "Content-Type: application/json" \
-d '{"features": [5.1, 3.5, 1.4, 0.2]}'
# Output:
# {
# "prediction": "setosa",
# "class_id": 0,
# "probabilities": {
# "setosa": 0.98,
# "versicolor": 0.02,
# "virginica": 0.0
# }
# }
Error Handling
# Requirements:
# - Python 3.9+
# - flask>=2.3.0
# - joblib>=1.3.0
# - numpy>=1.24.0, <2.0.0
# error_handling.py - Robust error handling
from flask import Flask, request, jsonify
import joblib
import numpy as np
app = Flask(__name__)
model = joblib.load('iris_model.pkl')
class_names = ['setosa', 'versicolor', 'virginica']
def validate_input(data):
"""Validate input data"""
if 'features' not in data:
raise ValueError("'features' key is required")
features = data['features']
if not isinstance(features, list):
raise ValueError("features must be a list")
if len(features) != 4:
raise ValueError(f"features must have 4 elements (received: {len(features)})")
return np.array(features).reshape(1, -1)
@app.route('/predict', methods=['POST'])
def predict():
try:
data = request.get_json()
# Input validation
features = validate_input(data)
# Prediction
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
return jsonify({
'prediction': class_names[prediction],
'class_id': int(prediction),
'probabilities': {
class_names[i]: float(prob)
for i, prob in enumerate(probabilities)
}
}), 200
except ValueError as e:
return jsonify({'error': f'Input error: {str(e)}'}), 400
except Exception as e:
return jsonify({'error': f'Server error: {str(e)}'}), 500
@app.errorhandler(404)
def not_found(error):
return jsonify({'error': 'Endpoint not found'}), 404
if __name__ == '__main__':
app.run(debug=False, host='0.0.0.0', port=5000)
1.3 High-Speed Inference with FastAPI
Advantages of FastAPI
FastAPI is faster than Flask and provides automatic documentation generation and type validation.
| Feature | Flask | FastAPI |
|---|---|---|
| Speed | Moderate | High (async support) |
| Type Validation | Manual | Automatic with Pydantic |
| Documentation | Manual | Auto-generated (Swagger UI) |
| Learning Curve | Low | Somewhat higher |
Pydantic Model Definition
# models.py - Pydantic model definition
from pydantic import BaseModel, Field, validator
from typing import List
class IrisFeatures(BaseModel):
"""Input schema for Iris features"""
features: List[float] = Field(
...,
description="4 features [sepal_length, sepal_width, petal_length, petal_width]",
min_items=4,
max_items=4
)
@validator('features')
def check_positive(cls, v):
"""Validate that features are positive values"""
if any(x < 0 for x in v):
raise ValueError('All features must be positive values')
return v
class PredictionResponse(BaseModel):
"""Response schema for predictions"""
prediction: str = Field(..., description="Predicted class name")
class_id: int = Field(..., description="Class ID (0-2)")
probabilities: dict = Field(..., description="Probabilities for each class")
# Usage example
sample_input = IrisFeatures(features=[5.1, 3.5, 1.4, 0.2])
print(sample_input.json())
# β {"features": [5.1, 3.5, 1.4, 0.2]}
Deploying PyTorch Models
# Requirements:
# - Python 3.9+
# - fastapi>=0.100.0
# - torch>=2.0.0, <2.3.0
"""
Example: Deploying PyTorch Models
Purpose: Demonstrate core concepts and implementation patterns
Target: Advanced
Execution time: 5-10 seconds
Dependencies: None
"""
# fastapi_pytorch.py - FastAPI + PyTorch inference API
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
import torch.nn as nn
from typing import List
import uvicorn
# Pydantic models
class InputData(BaseModel):
features: List[float]
class PredictionOutput(BaseModel):
prediction: int
confidence: float
# PyTorch model definition
class SimpleNN(nn.Module):
def __init__(self, input_size=4, hidden_size=16, num_classes=3):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# FastAPI application
app = FastAPI(
title="Iris Classification API",
description="Iris classification API using PyTorch model",
version="1.0.0"
)
# Load model (at startup)
model = SimpleNN()
model.load_state_dict(torch.load('iris_pytorch_model.pth'))
model.eval()
@app.post("/predict", response_model=PredictionOutput)
async def predict(data: InputData):
"""
Iris classification prediction
- **features**: List of 4 features
"""
try:
# Convert to tensor
features_tensor = torch.tensor([data.features], dtype=torch.float32)
# Inference
with torch.no_grad():
outputs = model(features_tensor)
probabilities = torch.softmax(outputs, dim=1)
prediction = torch.argmax(probabilities, dim=1).item()
confidence = probabilities[0][prediction].item()
return PredictionOutput(
prediction=prediction,
confidence=confidence
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
Automatic Swagger UI Generation
When you start FastAPI, interactive API documentation is automatically generated.
# Start the server
python fastapi_pytorch.py
# Access the following in your browser:
# - Swagger UI: http://localhost:8000/docs
# - ReDoc: http://localhost:8000/redoc
# - OpenAPI schema: http://localhost:8000/openapi.json
Benefit: You can test the API directly from your browser, significantly improving development efficiency.
1.4 Model Serialization
pickle / joblib
The standard way to save Python objects.
# Requirements:
# - Python 3.9+
# - joblib>=1.3.0
# - numpy>=1.24.0, <2.0.0
"""
Example: The standard way to save Python objects.
Purpose: Demonstrate machine learning model training and evaluation
Target: Advanced
Execution time: 30-60 seconds
Dependencies: None
"""
# serialization_comparison.py
import pickle
import joblib
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
# Train model
iris = load_iris()
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(iris.data, iris.target)
# Save with pickle
with open('model_pickle.pkl', 'wb') as f:
pickle.dump(model, f)
# Save with joblib (more efficient)
joblib.dump(model, 'model_joblib.pkl')
# Load
model_pickle = pickle.load(open('model_pickle.pkl', 'rb'))
model_joblib = joblib.load('model_joblib.pkl')
# Compare file sizes
import os
print(f"pickle: {os.path.getsize('model_pickle.pkl')} bytes")
print(f"joblib: {os.path.getsize('model_joblib.pkl')} bytes")
# β joblib is more efficient (especially with large numpy arrays)
ONNX Format
ONNX (Open Neural Network Exchange) is a format compatible across different frameworks.
# Requirements:
# - Python 3.9+
# - numpy>=1.24.0, <2.0.0
# - torch>=2.0.0, <2.3.0
"""
Example: ONNX (Open Neural Network Exchange) is a format compatible a
Purpose: Demonstrate core concepts and implementation patterns
Target: Advanced
Execution time: ~5 seconds
Dependencies: None
"""
# onnx_export.py - Convert PyTorch model to ONNX
import torch
import torch.nn as nn
import onnxruntime as ort
import numpy as np
# PyTorch model definition
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(4, 16)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(16, 3)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# Export model to ONNX
model = SimpleNN()
model.eval()
dummy_input = torch.randn(1, 4)
torch.onnx.export(
model,
dummy_input,
"iris_model.onnx",
input_names=['features'],
output_names=['logits'],
dynamic_axes={
'features': {0: 'batch_size'},
'logits': {0: 'batch_size'}
}
)
# Inference with ONNX Runtime
ort_session = ort.InferenceSession("iris_model.onnx")
def predict_onnx(features):
ort_inputs = {'features': features.astype(np.float32)}
ort_outputs = ort_session.run(None, ort_inputs)
return ort_outputs[0]
# Test
test_input = np.array([[5.1, 3.5, 1.4, 0.2]])
output = predict_onnx(test_input)
print(f"ONNX inference result: {output}")
TorchScript
A method to optimize PyTorch models for production environments.
# Requirements:
# - Python 3.9+
# - torch>=2.0.0, <2.3.0
"""
Example: A method to optimize PyTorch models for production environme
Purpose: Demonstrate core concepts and implementation patterns
Target: Advanced
Execution time: ~5 seconds
Dependencies: None
"""
# torchscript_export.py
import torch
import torch.nn as nn
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(4, 16)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(16, 3)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
model = SimpleNN()
model.eval()
# TorchScript conversion (tracing)
example_input = torch.randn(1, 4)
traced_model = torch.jit.trace(model, example_input)
# Save
traced_model.save("iris_torchscript.pt")
# Load and inference
loaded_model = torch.jit.load("iris_torchscript.pt")
test_input = torch.tensor([[5.1, 3.5, 1.4, 0.2]])
with torch.no_grad():
output = loaded_model(test_input)
print(f"TorchScript inference result: {output}")
Format Comparison and Selection
| Format | Target | Advantages | Disadvantages | Recommended Use |
|---|---|---|---|---|
| pickle/joblib | scikit-learn | Simple, lightweight | Python dependency, security risks | Development, prototyping |
| ONNX | General | Framework-agnostic, fast | Conversion overhead | Production, multi-language |
| TorchScript | PyTorch | Optimized, C++ executable | PyTorch-specific | Production (PyTorch) |
1.5 Practical Example: Building an Image Classification API
ResNet Inference API
# Requirements:
# - Python 3.9+
# - fastapi>=0.100.0
# - pillow>=10.0.0
# - torch>=2.0.0, <2.3.0
# - torchvision>=0.15.0
"""
Example: ResNet Inference API
Purpose: Demonstrate core concepts and implementation patterns
Target: Advanced
Execution time: 5-10 seconds
Dependencies: None
"""
# image_classification_api.py - Image classification API with ResNet
from fastapi import FastAPI, File, UploadFile, HTTPException
from pydantic import BaseModel
import torch
import torchvision.transforms as transforms
from torchvision.models import resnet50, ResNet50_Weights
from PIL import Image
import io
import time
app = FastAPI(title="Image Classification API")
# Load ResNet50 model (at startup)
print("Loading model...")
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)
model.eval()
# Preprocessing pipeline
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# ImageNet class names
categories = weights.meta["categories"]
class PredictionResult(BaseModel):
top_class: str
confidence: float
top_5: dict
inference_time_ms: float
@app.post("/predict", response_model=PredictionResult)
async def predict_image(file: UploadFile = File(...)):
"""
Image classification
- **file**: Image file (JPEG, PNG, etc.)
"""
try:
# Load image
image_bytes = await file.read()
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
# Preprocessing
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)
# Inference
start_time = time.time()
with torch.no_grad():
output = model(input_batch)
inference_time = (time.time() - start_time) * 1000
# Calculate probabilities
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Top-5 predictions
top5_prob, top5_idx = torch.topk(probabilities, 5)
top5_results = {
categories[idx]: float(prob)
for idx, prob in zip(top5_idx, top5_prob)
}
return PredictionResult(
top_class=categories[top5_idx[0]],
confidence=float(top5_prob[0]),
top_5=top5_results,
inference_time_ms=inference_time
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
Base64 Image Processing
# Requirements:
# - Python 3.9+
# - fastapi>=0.100.0
# - pillow>=10.0.0
# - torch>=2.0.0, <2.3.0
# - torchvision>=0.15.0
"""
Example: Base64 Image Processing
Purpose: Demonstrate core concepts and implementation patterns
Target: Advanced
Execution time: 5-10 seconds
Dependencies: None
"""
# base64_image_api.py - Processing Base64-encoded images
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import base64
import io
from PIL import Image
import torch
import torchvision.transforms as transforms
from torchvision.models import resnet50, ResNet50_Weights
app = FastAPI()
# Model setup
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)
model.eval()
categories = weights.meta["categories"]
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
class Base64ImageInput(BaseModel):
image: str # Base64-encoded string
class PredictionOutput(BaseModel):
prediction: str
confidence: float
@app.post("/predict", response_model=PredictionOutput)
async def predict_base64(data: Base64ImageInput):
"""
Classification of Base64-encoded images
Request example:
{
"image": "..."
}
"""
try:
# Base64 decoding
if ',' in data.image:
image_data = data.image.split(',')[1] # Remove "data:image/jpeg;base64,"
else:
image_data = data.image
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
# Inference
input_tensor = preprocess(image).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
top_prob, top_idx = torch.max(probabilities, dim=0)
return PredictionOutput(
prediction=categories[top_idx],
confidence=float(top_prob)
)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Image processing error: {str(e)}")
Performance Measurement
# Requirements:
# - Python 3.9+
# - numpy>=1.24.0, <2.0.0
# - pillow>=10.0.0
# - requests>=2.31.0
# benchmark.py - API performance measurement
import requests
import time
import numpy as np
from PIL import Image
import io
API_URL = "http://localhost:8000/predict"
def create_test_image():
"""Create dummy test image"""
img = Image.new('RGB', (224, 224), color='red')
buf = io.BytesIO()
img.save(buf, format='JPEG')
buf.seek(0)
return buf
def benchmark_api(num_requests=100):
"""Measure API performance"""
latencies = []
print(f"Sending {num_requests} requests...")
for i in range(num_requests):
image_file = create_test_image()
files = {'file': ('test.jpg', image_file, 'image/jpeg')}
start = time.time()
response = requests.post(API_URL, files=files)
latency = (time.time() - start) * 1000
if response.status_code == 200:
latencies.append(latency)
else:
print(f"Error: {response.status_code}")
if (i + 1) % 10 == 0:
print(f" Progress: {i + 1}/{num_requests}")
# Statistics
latencies = np.array(latencies)
print("\n=== Performance Statistics ===")
print(f"Number of requests: {len(latencies)}")
print(f"Average latency: {latencies.mean():.2f} ms")
print(f"Median: {np.median(latencies):.2f} ms")
print(f"Minimum: {latencies.min():.2f} ms")
print(f"Maximum: {latencies.max():.2f} ms")
print(f"Standard deviation: {latencies.std():.2f} ms")
print(f"P95: {np.percentile(latencies, 95):.2f} ms")
print(f"P99: {np.percentile(latencies, 99):.2f} ms")
if __name__ == "__main__":
benchmark_api(num_requests=100)
Execution Example:
=== Performance Statistics ===
Number of requests: 100
Average latency: 125.34 ms
Median: 120.12 ms
Minimum: 98.45 ms
Maximum: 210.67 ms
Standard deviation: 18.92 ms
P95: 155.23 ms
P99: 180.45 ms
1.6 Chapter Summary
What We Learned
Deployment Fundamentals
- Understanding the complete machine learning lifecycle
- Distinguishing between batch, real-time, and edge inference
Inference API with Flask
- Lightweight with low learning curve
- Implementing error handling
High-Speed Inference with FastAPI
- Type validation with Pydantic
- Automatic documentation generation (Swagger UI)
- Speed improvements through async processing
Model Serialization
- pickle/joblib: Development and prototyping
- ONNX: Multi-framework compatibility
- TorchScript: PyTorch optimization
Practical Image Classification API
- Real-time inference with ResNet
- Base64 image processing
- Performance measurement and optimization
Next Chapter
In Chapter 2, we will learn about Docker Containerization and Deployment:
- Docker basics and containerization
- Multi-stage builds
- Environment setup with Docker Compose
- Cloud deployment (AWS, GCP)
References
- GΓ©ron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O'Reilly Media.
- Huyen, C. (2022). Designing Machine Learning Systems. O'Reilly Media.
- FastAPI Official Documentation: https://fastapi.tiangolo.com/
- ONNX Official Website: https://onnx.ai/