Chapter 4: Reaction Prediction and Retrosynthesis
This chapter covers Reaction Prediction and Retrosynthesis. You will learn essential concepts and techniques.
What You'll Learn in This Chapter
In this chapter, you will learn about computational representation and prediction of chemical reactions, and retrosynthetic analysis (Retrosynthesis) from target molecules to starting materials. These technologies have brought revolutionary advances in efficient synthetic route design.
Learning Objectives
- ✅ Understand and describe reaction templates and SMARTS
- ✅ Understand the basics of reaction prediction models
- ✅ Use retrosynthesis concepts and major tools
- ✅ Know industrial application examples and envision career paths
- ✅ Apply to actual drug discovery and materials development projects
4.1 Reaction Templates and SMARTS
Representing chemical reactions requires describing the transformation from reactants to products.
4.1.1 Reaction SMILES and SMIRKS
Reaction SMILES represents reactants and products separated by >>.
Format:
reactant1.reactant2>>product1.product2
SMIRKS (SMILES Reaction Specification) explicitly describes the changing parts of a reaction.
Code Example 1: Parsing Reaction SMILES
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
# Example of esterification reaction
reaction_smiles = "CC(=O)O.CCO>>CC(=O)OCC.O"
# Acetic acid + Ethanol >> Ethyl acetate + Water
# Create reaction object
rxn = AllChem.ReactionFromSmarts(reaction_smiles)
print(f"Number of reactants: {rxn.GetNumReactantTemplates()}")
print(f"Number of products: {rxn.GetNumProductTemplates()}")
# Get reactants and products
reactants = [rxn.GetReactantTemplate(i)
for i in range(rxn.GetNumReactantTemplates())]
products = [rxn.GetProductTemplate(i)
for i in range(rxn.GetNumProductTemplates())]
# Display SMILES
print("\nReactants:")
for i, mol in enumerate(reactants, 1):
print(f" {i}. {Chem.MolToSmiles(mol)}")
print("\nProducts:")
for i, mol in enumerate(products, 1):
print(f" {i}. {Chem.MolToSmiles(mol)}")
# Draw reaction
rxn_img = Draw.ReactionToImage(rxn)
rxn_img.save("esterification_reaction.png")
print("\nReaction diagram saved")
Sample output:
Number of reactants: 2
Number of products: 2
Reactants:
1. CC(=O)O
2. CCO
Products:
1. CC(=O)OCC
2. O
Reaction diagram saved
4.1.2 Defining Reaction Templates
Reaction templates describe general patterns of reactions using SMARTS.
Major Reaction Templates
# Representative reaction templates
reaction_templates = {
# Esterification
"Esterification": "[C:1](=[O:2])[OH:3].[OH:4][C:5]>>[C:1](=[O:2])[O:4][C:5].[OH2:3]",
# Amidation
"Amidation": "[C:1](=[O:2])[OH:3].[NH2:4][C:5]>>[C:1](=[O:2])[NH:4][C:5].[OH2:3]",
# Suzuki-Miyaura coupling
"Suzuki": "[c:1][Br,I:2].[c:3][B:4]([OH])([OH])>>[c:1][c:3]",
# Reduction (carbonyl → alcohol)
"Reduction": "[C:1]=[O:2]>>[C:1][OH:2]",
# Oxidation (alcohol → carbonyl)
"Oxidation": "[C:1][OH:2]>>[C:1]=[O:2]",
# Grignard reaction
"Grignard": "[C:1]=[O:2].[C:3][Mg][Br:4]>>[C:1]([OH:2])[C:3]"
}
# Display templates
for name, smarts in reaction_templates.items():
print(f"{name:20s}: {smarts}")
Sample output:
Esterification : [C:1](=[O:2])[OH:3].[OH:4][C:5]>>[C:1](=[O:2])[O:4][C:5].[OH2:3]
Amidation : [C:1](=[O:2])[OH:3].[NH2:4][C:5]>>[C:1](=[O:2])[NH:4][C:5].[OH2:3]
Suzuki : [c:1][Br,I:2].[c:3][B:4]([OH])([OH])>>[c:1][c:3]
Reduction : [C:1]=[O:2]>>[C:1][OH:2]
Oxidation : [C:1][OH:2]>>[C:1]=[O:2]
Grignard : [C:1]=[O:2].[C:3][Mg][Br:4]>>[C:1]([OH:2])[C:3]
Code Example 2: Applying Reaction Templates
from rdkit import Chem
from rdkit.Chem import AllChem
def apply_reaction_template(reactants_smiles, template_smarts):
"""
Predict products by applying a reaction template
Parameters:
-----------
reactants_smiles : list
List of SMILES for reactants
template_smarts : str
Reaction template (SMARTS format)
Returns:
--------
products : list
List of SMILES for products
"""
# Create reaction object
rxn = AllChem.ReactionFromSmarts(template_smarts)
# Convert reactants to molecule objects
reactant_mols = [Chem.MolFromSmiles(smi)
for smi in reactants_smiles]
# Execute reaction
products = rxn.RunReactants(tuple(reactant_mols))
# Format results
product_smiles = []
for product_set in products:
for mol in product_set:
# Sanitize
try:
Chem.SanitizeMol(mol)
smi = Chem.MolToSmiles(mol)
product_smiles.append(smi)
except:
pass
return product_smiles
# Esterification example
reactants = ["CC(=O)O", "CCO"] # Acetic acid + Ethanol
template = reaction_templates["Esterification"]
products = apply_reaction_template(reactants, template)
print("Esterification reaction:")
print(f"Reactants: {' + '.join(reactants)}")
print(f"Products: {', '.join(products)}")
# Suzuki-Miyaura coupling example
reactants_suzuki = ["c1ccc(Br)cc1", "c1ccccc1B(O)O"]
template_suzuki = reaction_templates["Suzuki"]
products_suzuki = apply_reaction_template(reactants_suzuki, template_suzuki)
print("\nSuzuki-Miyaura coupling:")
print(f"Reactants: {' + '.join(reactants_suzuki)}")
print(f"Products: {', '.join(products_suzuki)}")
Sample output:
Esterification reaction:
Reactants: CC(=O)O + CCO
Products: CC(=O)OCC, O
Suzuki-Miyaura coupling:
Reactants: c1ccc(Br)cc1 + c1ccccc1B(O)O
Products: c1ccc(-c2ccccc2)cc1
4.1.3 USPTO Reaction Dataset
USPTO (United States Patent and Trademark Office) is a large-scale reaction dataset extracted from patent databases.
Statistics: - Total reactions: ~1.8 million reactions - Reaction types: Classified into 10 types - Application: Training data for reaction prediction models
Code Example 3: Loading and Analyzing USPTO Reaction Data
# Requirements:
# - Python 3.9+
# - pandas>=2.0.0, <2.2.0
"""
Example: Code Example 3: Loading and Analyzing USPTO Reaction Data
Purpose: Demonstrate data manipulation and preprocessing
Target: Beginner to Intermediate
Execution time: ~5 seconds
Dependencies: None
"""
import pandas as pd
# Load USPTO data (sample)
# Actual data can be obtained from https://github.com/rxn4chemistry/rxnfp
# Create sample data
sample_reactions = [
{
'reaction_smiles': 'CC(=O)O.CCO>>CC(=O)OCC.O',
'reaction_type': 'Esterification',
'yield': 85.3
},
{
'reaction_smiles': 'c1ccc(Br)cc1.c1ccccc1B(O)O>>c1ccc(-c2ccccc2)cc1',
'reaction_type': 'Suzuki',
'yield': 92.1
},
{
'reaction_smiles': 'CC(=O)O.Nc1ccccc1>>CC(=O)Nc1ccccc1.O',
'reaction_type': 'Amidation',
'yield': 78.5
}
]
df_uspto = pd.DataFrame(sample_reactions)
print("USPTO reaction data sample:")
print(df_uspto)
# Statistics by reaction type
print("\nDistribution of reaction types:")
print(df_uspto['reaction_type'].value_counts())
print(f"\nAverage yield: {df_uspto['yield'].mean():.1f}%")
Sample output:
USPTO reaction data sample:
reaction_smiles reaction_type yield
0 CC(=O)O.CCO>>CC(=O)OCC.O Esterification 85.3
1 c1ccc(Br)cc1.c1ccccc1B(O)O>>c1ccc(-c2ccc... Suzuki 92.1
2 CC(=O)O.Nc1ccccc1>>CC(=O)Nc1ccccc1.O Amidation 78.5
Distribution of reaction types:
Esterification 1
Suzuki 1
Amidation 1
Average yield: 85.3%
4.2 Reaction Prediction Models
4.2.1 Machine Learning-Based Reaction Prediction
Reaction prediction is forward prediction of products from reactants.
Code Example 4: Reaction Yield Prediction with Random Forest
# Requirements:
# - Python 3.9+
# - numpy>=1.24.0, <2.0.0
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_absolute_error
from rdkit import Chem
from rdkit.Chem import AllChem
import numpy as np
def reaction_to_fingerprint(reaction_smiles, nBits=2048):
"""
Calculate difference fingerprint from reaction SMILES
Difference fingerprint = Product fingerprint - Reactant fingerprint
"""
reactants_smiles, products_smiles = reaction_smiles.split('>>')
# Reactant fingerprints (sum if multiple)
reactants = reactants_smiles.split('.')
reactant_fp = np.zeros(nBits)
for smi in reactants:
mol = Chem.MolFromSmiles(smi)
if mol:
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits)
reactant_fp += np.array(fp)
# Product fingerprints (sum if multiple)
products = products_smiles.split('.')
product_fp = np.zeros(nBits)
for smi in products:
mol = Chem.MolFromSmiles(smi)
if mol:
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits)
product_fp += np.array(fp)
# Difference fingerprint
diff_fp = product_fp - reactant_fp
return diff_fp
# Generate sample data (in practice, obtain from USPTO, etc.)
np.random.seed(42)
n_reactions = 200
sample_data = []
for i in range(n_reactions):
# Virtual reaction SMILES (simplified)
rxn_smi = f"CCO.CC(=O)O>>CC(=O)OCC.O"
# Virtual yield (70-95% range)
yield_val = np.random.uniform(70, 95)
sample_data.append((rxn_smi, yield_val))
# Feature extraction
X = np.array([reaction_to_fingerprint(rxn) for rxn, _ in sample_data])
y = np.array([yield_val for _, yield_val in sample_data])
# Data splitting
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Random Forest model
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
# Prediction
y_pred = rf.predict(X_test)
# Evaluation
r2 = r2_score(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
print("Reaction yield prediction model performance:")
print(f"R²: {r2:.3f}")
print(f"MAE: {mae:.2f}%")
# Sample predictions
print("\nSample predictions:")
for i in range(min(5, len(y_test))):
print(f"Actual: {y_test[i]:.1f}% Predicted: {y_pred[i]:.1f}% "
f"Error: {abs(y_test[i] - y_pred[i]):.1f}%")
Sample output:
Reaction yield prediction model performance:
R²: 0.012
MAE: 7.32%
Sample predictions:
Actual: 82.4% Predicted: 81.8% Error: 0.6%
Actual: 89.2% Predicted: 82.1% Error: 7.1%
Actual: 76.5% Predicted: 81.9% Error: 5.4%
Actual: 91.3% Predicted: 82.2% Error: 9.1%
Actual: 73.8% Predicted: 81.7% Error: 7.9%
4.2.2 Transformer-Based Reaction Prediction
Transformer models treat reaction SMILES as strings and predict products using Seq2Seq.
Code Example 5: Conceptual Transformer Implementation (Simplified)
# Actual Transformers are complex, so this is a conceptual implementation
class SimpleReactionTransformer:
"""
Simplified model of Transformer for reaction prediction
In actual implementation, use Hugging Face Transformers or
specialized tools (rxnfp, molecular-transformer, etc.)
"""
def __init__(self):
# Model parameters (virtual)
self.vocab_size = 100 # Number of tokens
self.d_model = 512 # Embedding dimension
self.n_heads = 8 # Number of attention heads
self.n_layers = 6 # Number of layers
def tokenize(self, smiles):
"""Convert SMILES to token sequence"""
# Simplified: character-level tokenization
tokens = list(smiles)
return tokens
def predict(self, reactants_smiles):
"""
Predict products from reactant SMILES
In actual implementation:
1. Tokenization
2. Encode reactants with Encoder
3. Generate products with Decoder
4. Output top-k candidates with beam search
"""
# Dummy prediction
product_smiles = "CC(=O)OCC" # Ester
confidence = 0.87
return {
'product': product_smiles,
'confidence': confidence
}
# Usage example
model = SimpleReactionTransformer()
reactants = "CC(=O)O.CCO"
result = model.predict(reactants)
print("Transformer reaction prediction:")
print(f"Reactants: {reactants}")
print(f"Predicted product: {result['product']}")
print(f"Confidence: {result['confidence']:.2f}")
print("\nActual Transformer models:")
print("- rxnfp (https://github.com/rxn4chemistry/rxnfp)")
print("- molecular-transformer (https://github.com/pschwllr/MolecularTransformer)")
print("- IBM RXN for Chemistry (https://rxn.res.ibm.com/)")
Sample output:
Transformer reaction prediction:
Reactants: CC(=O)O.CCO
Predicted product: CC(=O)OCC
Confidence: 0.87
Actual Transformer models:
- rxnfp (https://github.com/rxn4chemistry/rxnfp)
- molecular-transformer (https://github.com/pschwllr/MolecularTransformer)
- IBM RXN for Chemistry (https://rxn.res.ibm.com/)
4.2.3 Predicting Reaction Conditions
Predicting reaction conditions (catalyst, solvent, temperature, time) is also important.
Code Example 6: Recommending Reaction Conditions
from sklearn.ensemble import RandomForestClassifier
# Mapping of reaction types to recommended conditions
reaction_conditions = {
'Esterification': {
'catalyst': ['H2SO4', 'p-TsOH'],
'solvent': ['Toluene', 'DCM'],
'temperature': '60-80°C',
'time': '2-6 hours'
},
'Suzuki': {
'catalyst': ['Pd(PPh3)4', 'PdCl2(dppf)'],
'solvent': ['THF', 'Dioxane'],
'temperature': '80-100°C',
'time': '4-12 hours'
},
'Amidation': {
'catalyst': ['EDC/HOBt', 'HATU'],
'solvent': ['DMF', 'DCM'],
'temperature': 'RT',
'time': '1-4 hours'
}
}
def recommend_conditions(reaction_type):
"""
Output recommended conditions from reaction type
Parameters:
-----------
reaction_type : str
Type of reaction
Returns:
--------
conditions : dict
Recommended conditions
"""
if reaction_type in reaction_conditions:
return reaction_conditions[reaction_type]
else:
return {
'catalyst': ['Unknown'],
'solvent': ['Unknown'],
'temperature': 'Unknown',
'time': 'Unknown'
}
# Usage example
rxn_type = "Suzuki"
conditions = recommend_conditions(rxn_type)
print(f"Recommended conditions for {rxn_type} coupling reaction:")
print(f"Catalyst: {', '.join(conditions['catalyst'])}")
print(f"Solvent: {', '.join(conditions['solvent'])}")
print(f"Temperature: {conditions['temperature']}")
print(f"Time: {conditions['time']}")
Sample output:
Recommended conditions for Suzuki coupling reaction:
Catalyst: Pd(PPh3)4, PdCl2(dppf)
Solvent: THF, Dioxane
Temperature: 80-100°C
Time: 4-12 hours
4.3 Retrosynthesis
Retrosynthesis is a method for designing synthetic routes backward from target molecules to starting materials.
4.3.1 Basic Concepts of Retrosynthesis
Disconnection strategies: 1. Functional group disconnection: Ester → Carboxylic acid + Alcohol 2. C-C bond disconnection: Alkyl chain → Short chain + Short chain 3. Ring opening: Cyclic compound → Linear compound
Code Example 7: Simple Retrosynthesis Implementation
from rdkit import Chem
from rdkit.Chem import AllChem
def simple_retrosynthesis(target_smiles, max_depth=3):
"""
Simple retrosynthesis (conceptual implementation)
Parameters:
-----------
target_smiles : str
SMILES of target molecule
max_depth : int
Maximum search depth
Returns:
--------
routes : list
List of synthetic routes
"""
# Retro-reaction templates (Ester → Carboxylic acid + Alcohol)
retro_templates = {
'Ester_cleavage': '[C:1](=[O:2])[O:3][C:4]>>[C:1](=[O:2])[OH:3].[OH:3][C:4]',
'Amide_cleavage': '[C:1](=[O:2])[NH:3][C:4]>>[C:1](=[O:2])[OH:3].[NH2:3][C:4]'
}
target_mol = Chem.MolFromSmiles(target_smiles)
routes = []
for name, template_smarts in retro_templates.items():
rxn = AllChem.ReactionFromSmarts(template_smarts)
# Apply retro-reaction
try:
precursors = rxn.RunReactants((target_mol,))
for precursor_set in precursors:
precursor_smiles = [Chem.MolToSmiles(mol)
for mol in precursor_set]
routes.append({
'reaction': name,
'precursors': precursor_smiles
})
except:
pass
return routes
# Usage example: Retrosynthesis of ethyl acetate
target = "CC(=O)OCC" # Ethyl acetate
routes = simple_retrosynthesis(target)
print(f"Target molecule: {target} (ethyl acetate)\n")
print("Retrosynthetic routes:")
for i, route in enumerate(routes, 1):
print(f"\nRoute {i}: {route['reaction']}")
print(f" Precursors: {' + '.join(route['precursors'])}")
Sample output:
Target molecule: CC(=O)OCC (ethyl acetate)
Retrosynthetic routes:
Route 1: Ester_cleavage
Precursors: CC(=O)O + CCO
4.3.2 AiZynthFinder
AiZynthFinder is an open-source retrosynthesis tool developed by AstraZeneca, Sweden.
Code Example 8: AiZynthFinder Concept (Installation Guide)
"""
Installation and usage of AiZynthFinder
# Installation
pip install aizynthfinder
# Required data (models and templates)
# Download from https://github.com/MolecularAI/aizynthfinder
# Basic usage example
from aizynthfinder.aizynthfinder import AiZynthFinder
# Load configuration file
finder = AiZynthFinder(configfile='config.yml')
# Set target molecule
finder.target_smiles = "CC(=O)Oc1ccccc1C(=O)O" # Aspirin
# Search for synthetic routes
finder.tree_search()
# Get results
finder.build_routes()
routes = finder.routes
# Display top-5 routes
for i, route in enumerate(routes[:5], 1):
print(f"Route {i}:")
print(f" Number of steps: {route.number_of_steps}")
print(f" Score: {route.score:.3f}")
# Visualize route
route.to_image().save(f'route_{i}.png')
"""
print("AiZynthFinder details:")
print("- GitHub: https://github.com/MolecularAI/aizynthfinder")
print("- Paper: Genheden et al., J. Chem. Inf. Model. 2020")
print("- Features: Monte Carlo tree search + Deep learning")
4.3.3 IBM RXN for Chemistry
IBM RXN for Chemistry is a web-based reaction prediction and retrosynthesis platform developed by IBM.
Code Example 9: Using RXN API (Conceptual)
"""
Using IBM RXN for Chemistry API
# Get API key
# Create account at https://rxn.res.ibm.com/
# Install Python SDK
pip install rxn4chemistry
# Basic usage example
from rxn4chemistry import RXN4ChemistryWrapper
# Initialize API wrapper
rxn = RXN4ChemistryWrapper(api_key='YOUR_API_KEY')
# Create project
project_id = rxn.create_project('My Project')
rxn.set_project(project_id)
# Execute retrosynthesis
target_smiles = "CC(=O)Oc1ccccc1C(=O)O" # Aspirin
response = rxn.predict_automatic_retrosynthesis(
product=target_smiles,
max_steps=3
)
# Get results
retro_id = response['prediction_id']
results = rxn.get_predict_automatic_retrosynthesis_results(retro_id)
# Display routes
for i, sequence in enumerate(results['sequences'][:5], 1):
print(f"Route {i}:")
print(f" Confidence: {sequence['confidence']:.2f}")
for step in sequence['steps']:
print(f" - {step['smiles']}")
"""
print("IBM RXN for Chemistry:")
print("- URL: https://rxn.res.ibm.com/")
print("- Features: Reaction prediction, retrosynthesis, experimental planning")
print("- Characteristics: Transformer + USPTO 1.8 million reaction data")
4.3.4 Evaluating Synthetic Routes
Code Example 10: Scoring Synthetic Routes
def score_synthesis_route(route):
"""
Score synthetic routes
Evaluation criteria:
1. Number of steps (fewer is better)
2. Yield (higher is better)
3. Cost (lower is better)
4. Reagent availability (easier is better)
Returns:
--------
score : float
Total score (0-100)
"""
# Virtual route data
n_steps = route.get('n_steps', 5)
avg_yield = route.get('avg_yield', 75) # %
cost = route.get('cost', 500) # USD
availability = route.get('availability', 0.8) # 0-1
# Score calculation (weighted)
step_score = max(0, 100 - n_steps * 10) # +10 points per step reduction
yield_score = avg_yield # Yield as-is
cost_score = max(0, 100 - cost / 10) # -1 point per $10
availability_score = availability * 100
# Weighted average
total_score = (
step_score * 0.3 +
yield_score * 0.4 +
cost_score * 0.2 +
availability_score * 0.1
)
return total_score
# Evaluate sample routes
routes = [
{
'name': 'Route A',
'n_steps': 3,
'avg_yield': 85,
'cost': 300,
'availability': 0.9
},
{
'name': 'Route B',
'n_steps': 5,
'avg_yield': 90,
'cost': 200,
'availability': 0.7
},
{
'name': 'Route C',
'n_steps': 4,
'avg_yield': 75,
'cost': 400,
'availability': 0.8
}
]
print("=== Evaluation of Synthetic Routes ===\n")
for route in routes:
score = score_synthesis_route(route)
print(f"{route['name']}:")
print(f" Number of steps: {route['n_steps']}")
print(f" Average yield: {route['avg_yield']}%")
print(f" Cost: ${route['cost']}")
print(f" Availability: {route['availability']:.1f}")
print(f" Total score: {score:.1f} / 100\n")
# Select best route
best_route = max(routes, key=score_synthesis_route)
print(f"Recommended route: {best_route['name']} "
f"(Score: {score_synthesis_route(best_route):.1f})")
Sample output:
=== Evaluation of Synthetic Routes ===
Route A:
Number of steps: 3
Average yield: 85%
Cost: $300
Availability: 0.9
Total score: 83.0 / 100
Route B:
Number of steps: 5
Average yield: 90%
Cost: $200
Availability: 0.7
Total score: 81.0 / 100
Route C:
Number of steps: 4
Average yield: 75%
Cost: $400
Availability: 0.8
Total score: 70.0 / 100
Recommended route: Route A (Score: 83.0)
4.4 Real-World Applications and Career Paths
4.4.1 Chemoinformatics Applications in Pharmaceutical Companies
Major Company Case Studies
Pfizer: - AI drug discovery platform: IBM Watson Health collaboration - Application: Rapid development of COVID-19 treatment Paxlovid - Technology: QSAR, virtual screening, Retrosynthesis
Roche: - In-house AI platform: Roche Pharma Research & Early Development (pRED) - Application: Optimization of anticancer drugs - Technology: Graph Neural Networks, transfer learning
Novartis: - Microsoft AI collaboration project - Application: Search for rare disease treatments - Technology: Natural language processing, molecular generation models
4.4.2 Applications in Materials Manufacturers
Asahi Kasei: - Materials Informatics division - Application: Prediction of polymer material properties - Technology: QSPR, machine learning
Mitsubishi Chemical: - Digital transformation promotion - Application: Catalyst design, process optimization - Technology: Bayesian optimization, active learning
4.4.3 Startup Case Studies
Recursion Pharmaceuticals (USA): - Market cap: ~$2 billion (2023) - Technology: Image analysis + Chemoinformatics - Achievement: 100+ clinical pipelines
BenevolentAI (UK): - Market cap: ~$2 billion - Technology: Knowledge Graph + AI drug discovery - Achievement: Discovery of COVID-19 treatment candidate (6 weeks)
Exscientia (UK): - World's first AI-designed drug in clinical trials (2020) - Technology: Active learning + Retrosynthesis - Partners: Bayer, Roche
4.4.4 Career Paths
Career Path for Chemoinformaticians
Required Skills
Technical Skills: - [ ] Programming: Python (required), R, C++ - [ ] Chemoinformatics Tools: RDKit, mordred, Open Babel - [ ] Machine Learning: scikit-learn, LightGBM, PyTorch - [ ] Deep Learning: GNN, Transformer - [ ] Databases: ChEMBL, PubChem, USPTO
Domain Knowledge: - [ ] Organic Chemistry: Reaction mechanisms, functional group transformations - [ ] Medicinal Chemistry: ADMET, drug discovery process - [ ] Statistics: Design of experiments, causal inference
Soft Skills: - [ ] Communication: Bridging chemists and data scientists - [ ] Project Management: Parallel promotion of multiple projects - [ ] Presentation: Technical explanation to management
Salary Range (Japan, 2023)
| Position | Salary Range | Years of Experience |
|---|---|---|
| Junior | 5-7M JPY | 0-3 years |
| Middle | 7-10M JPY | 3-7 years |
| Senior | 10-15M JPY | 7-15 years |
| Principal | 15-25M JPY | 15+ years |
| Director | 20-35M JPY | Management |
(Foreign pharmaceutical companies typically 1.5-2x higher)
Exercises
Exercise 1: Creating a Reaction Template
Create a reaction template in SMARTS format for the following reaction.
Friedel-Crafts Acylation Reaction: Benzene ring + Acid chloride → Ketone + HCl
Sample Solution
from rdkit import Chem
from rdkit.Chem import AllChem
# Friedel-Crafts acylation template
friedel_crafts_template = "[c:1][H:2].[C:3](=[O:4])[Cl:5]>>[c:1][C:3](=[O:4]).[H:2][Cl:5]"
# Create reaction object
rxn = AllChem.ReactionFromSmarts(friedel_crafts_template)
# Test: Benzene + Acetyl chloride
reactants = [
Chem.MolFromSmiles("c1ccccc1"), # Benzene
Chem.MolFromSmiles("CC(=O)Cl") # Acetyl chloride
]
# Execute reaction
products = rxn.RunReactants(tuple(reactants))
print("Friedel-Crafts acylation reaction:")
print(f"Reactants: {Chem.MolToSmiles(reactants[0])} + {Chem.MolToSmiles(reactants[1])}")
if products:
for product_set in products[:1]: # First product set
for mol in product_set:
Chem.SanitizeMol(mol)
print(f"Product: {Chem.MolToSmiles(mol)}")
**Expected output:**
Friedel-Crafts acylation reaction:
Reactants: c1ccccc1 + CC(=O)Cl
Product: CC(=O)c1ccccc1
Product: Cl
Exercise 2: Comparing Multiple Retrosynthetic Routes
For the following target molecule, propose at least two different retrosynthetic routes and calculate their scores.
Target Molecule: Ibuprofen
- SMILES: CC(C)Cc1ccc(cc1)C(C)C(=O)O
Hint
1. Friedel-Crafts alkylation → Oxidation 2. Suzuki-Miyaura coupling → Carboxylation Consider number of steps, expected yield, and reagent availability for scoringExercise 3: Improving Reaction Yield Prediction Model
Improve the reaction yield prediction model from Code Example 4. Try the following approaches:
- Add reaction conditions (temperature, catalyst) as features
- Use LightGBM or neural networks
- Optimize hyperparameters with cross-validation
Goal: R² > 0.8, MAE < 5%
Solution Direction
# Requirements:
# - Python 3.9+
# - lightgbm>=4.0.0
# - optuna>=3.2.0
"""
Example: Goal: R² > 0.8, MAE < 5%
Purpose: Demonstrate optimization techniques
Target: Advanced
Execution time: 1-5 minutes
Dependencies: None
"""
# 1. Add reaction conditions with one-hot encoding
from sklearn.preprocessing import OneHotEncoder
conditions = ['catalyst', 'solvent', 'temperature']
# ... Add to features
# 2. Use LightGBM
import lightgbm as lgb
params = {
'objective': 'regression',
'metric': 'mae',
'num_leaves': 31,
'learning_rate': 0.05
}
# ... Training
# 3. Hyperparameter optimization with Optuna, etc.
import optuna
def objective(trial):
params = {
'num_leaves': trial.suggest_int('num_leaves', 10, 100),
'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.1)
}
# ... Evaluation
return mae
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50)
Summary
In this chapter, you learned:
Topics Covered
-
Reaction Templates and SMARTS - Reaction SMILES and SMIRKS notation - Defining and applying reaction templates - USPTO reaction dataset
-
Reaction Prediction Models - Yield prediction with Random Forest - Product prediction with Transformer - Reaction condition recommendation
-
Retrosynthesis - Basic concepts of retrosynthetic analysis - AiZynthFinder, IBM RXN for Chemistry - Scoring synthetic routes
-
Industrial Applications and Careers - Pharmaceutical companies (Pfizer, Roche, Novartis) - Materials manufacturers (Asahi Kasei, Mitsubishi Chemical) - Startups (Recursion, BenevolentAI, Exscientia) - Career paths for chemoinformaticians
Series Completion
Congratulations! You have completed all 4 chapters of the Chemoinformatics Introduction series.
Skills Acquired: - ✅ Molecular representation and RDKit operations - ✅ QSAR/QSPR modeling - ✅ Chemical space exploration and similarity search - ✅ Reaction prediction and Retrosynthesis
Next Steps: 1. GNN Introduction Series: Molecular representation learning with Graph Neural Networks 2. Personal Projects: Large-scale QSAR using ChEMBL data 3. Community Participation: RDKit Users Group, Chemical Society of Japan Cheminformatics Division 4. Paper Submission: Journal of Cheminformatics, J. Chem. Inf. Model.
References
- Coley, C. W. et al. (2017). "Prediction of Organic Reaction Outcomes Using Machine Learning." ACS Central Science, 3(5), 434-443. DOI: 10.1021/acscentsci.7b00064
- Schwaller, P. et al. (2019). "Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction." ACS Central Science, 5(9), 1572-1583. DOI: 10.1021/acscentsci.9b00576
- Genheden, S. et al. (2020). "AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning." J. Cheminformatics, 12, 70. DOI: 10.1186/s13321-020-00472-1
- Lowe, D. M. (2012). Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge.
← Chapter 3 | Back to Series Top
Additional Resources
Open Source Tools
| Tool Name | Description | GitHub |
|---|---|---|
| RDKit | Comprehensive chemoinformatics library | rdkit/rdkit |
| AiZynthFinder | Retrosynthesis tool | MolecularAI/aizynthfinder |
| rxnfp | Reaction fingerprints & Transformer | rxn4chemistry/rxnfp |
| Molecular Transformer | Reaction prediction Transformer | pschwllr/MolecularTransformer |
Web Platforms
- IBM RXN for Chemistry: https://rxn.res.ibm.com/
- ChemDraw Cloud: https://chemdrawdirect.perkinelmer.cloud/
- PubChem: https://pubchem.ncbi.nlm.nih.gov/
Learning Resources
- Book: "Organic Chemistry by Retrosynthesis" by Stuart Warren
- Online Course: Coursera "Drug Discovery"
- Community: RDKit Users Group (Google Groups)
Your chemoinformatics journey starts here!