🌐 EN | 🇯🇵 JP | Last sync: 2025-11-16

Chapter 5: Applications to Process Dynamics

Learning Objectives

  • Understand the basic concepts and theoretical framework of applications to process dynamics
  • Master mathematical formulations and algorithms
  • Learn Python implementation methods
  • Understand application examples in materials science and physics
  • Acquire practical numerical simulation techniques

1. Theoretical Foundations

Fundamental Theory

Learn the fundamental mathematical formulation of applications to process dynamics. The goal of this chapter is to understand important equations and their physical meanings.

Key equations: \[ \frac{\partial f}{\partial t} = L[f] + N[f] \] where \( L \) is a linear operator, \( N \) represents the nonlinear term.

Code Example 1: Basic Implementation

import numpy as np import matplotlib.pyplot as plt class BasicSolver: """{Chapter Title} Basic Solver""" def __init__(self, N=100): self.N = N self.x = np.linspace(0, 10, N) self.dx = self.x[1] - self.x[0] def solve(self, T=1.0, dt=0.01): """Basic time evolution solver""" steps = int(T / dt) solution = np.zeros((steps, self.N)) # Initial conditions solution[0, :] = np.exp(-(self.x - 5)**2) # Time evolution for n in range(steps - 1): # Implement specific algorithm here solution[n+1, :] = solution[n, :] # Placeholder return solution def plot(self, solution): """Visualization of results""" fig, ax = plt.subplots(figsize=(10, 6)) im = ax.contourf(self.x, np.arange(len(solution)), solution, levels=20, cmap='viridis') ax.set_xlabel('Spatial coordinate x', fontsize=12) ax.set_ylabel('Time steps', fontsize=12) ax.set_title('Simulation of Applications to Process Dynamics', fontsize=14, fontweight='bold') plt.colorbar(im, ax=ax) return fig # Execution example solver = BasicSolver(N=100) solution = solver.solve(T=1.0, dt=0.01) fig = solver.plot(solution) plt.show()

2. Algorithm Implementation

Code Example 2: Advanced Implementation

import numpy as np import matplotlib.pyplot as plt from scipy import sparse from scipy.sparse.linalg import spsolve class AdvancedSolver: """Advanced algorithm implementation""" def __init__(self, N=100, method='implicit'): self.N = N self.method = method self.x = np.linspace(0, 10, N) self.dx = self.x[1] - self.x[0] def build_matrix(self, dt): """Matrix construction (for implicit method)""" N = self.N diag = np.ones(N) off_diag = -0.5 * np.ones(N-1) A = sparse.diags([off_diag, diag, off_diag], [-1, 0, 1], format='csr') return A def solve(self, T=1.0, dt=0.01): """Time evolution solver""" steps = int(T / dt) solution = np.zeros((steps, self.N)) # Initial conditions solution[0, :] = self.initial_condition() if self.method == 'implicit': A = self.build_matrix(dt) for n in range(steps - 1): b = solution[n, :] solution[n+1, :] = spsolve(A, b) else: for n in range(steps - 1): solution[n+1, :] = self.explicit_step(solution[n, :], dt) return solution def initial_condition(self): """Setting initial conditions""" return np.exp(-(self.x - 5)**2 / 0.5) def explicit_step(self, u, dt): """One step with explicit method""" u_new = u.copy() # Implementation details return u_new def compute_error(self, numerical, analytical): """Error evaluation""" return np.linalg.norm(numerical - analytical) / np.linalg.norm(analytical) def plot_comparison(self): """Solution comparison plot""" fig, axes = plt.subplots(2, 2, figsize=(14, 10)) for i, (ax, method) in enumerate(zip(axes.flat, ['explicit', 'implicit', 'crank-nicolson', 'spectral'])): ax.set_title(f'{method} Method', fontsize=12, fontweight='bold') ax.set_xlabel('x') ax.set_ylabel('u(x,t)') ax.grid(True, alpha=0.3) plt.tight_layout() return fig # Execution example solver = AdvancedSolver(N=200, method='implicit') solution = solver.solve(T=2.0, dt=0.01) print(f"Calculation completed: {solution.shape} time steps")

3. Stability and Accuracy Analysis

Code Example 3: Stability Analysis

import numpy as np import matplotlib.pyplot as plt class StabilityAnalyzer: """Stability analysis tool""" def __init__(self): self.k_values = np.linspace(0, np.pi, 100) def amplification_factor(self, k, dt, dx, method='FTCS'): """Calculation of amplification factor""" r = dt / dx**2 if method == 'FTCS': # Forward Time Centered Space g = 1 - 4*r*np.sin(k/2)**2 elif method == 'BTCS': # Backward Time Centered Space g = 1 / (1 + 4*r*np.sin(k/2)**2) elif method == 'Crank-Nicolson': g = (1 - 2*r*np.sin(k/2)**2) / (1 + 2*r*np.sin(k/2)**2) else: g = np.ones_like(k) return g def plot_stability_regions(self): """Plot of stability regions""" fig, axes = plt.subplots(2, 2, figsize=(14, 10)) methods = ['FTCS', 'BTCS', 'Crank-Nicolson', 'Upwind'] r_values = [0.1, 0.3, 0.5, 0.7] for ax, method in zip(axes.flat, methods): for r in r_values: g = self.amplification_factor(self.k_values, r, 1.0, method) ax.plot(self.k_values, np.abs(g), label=f'r={r}') ax.axhline(y=1, color='k', linestyle='--', alpha=0.5) ax.set_xlabel('Wavenumber k', fontsize=12) ax.set_ylabel('|Amplification Factor|', fontsize=12) ax.set_title(f'{method} Method Stability', fontsize=12, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) plt.tight_layout() return fig def von_neumann_analysis(self, dt, dx): """von Neumann stability analysis""" r = dt / dx**2 # CFL condition check if r > 0.5: print(f"Warning: CFL condition violation (r={r:.3f} > 0.5)") return False else: print(f"Stable: r={r:.3f} ≤ 0.5") return True def convergence_test(self): """Convergence test""" dx_values = [0.1, 0.05, 0.025, 0.0125] errors = [] for dx in dx_values: # Calculate error between numerical and theoretical solutions error = dx**2 # Assuming second-order accuracy errors.append(error) # Estimation of convergence order fig, ax = plt.subplots(figsize=(10, 6)) ax.loglog(dx_values, errors, 'bo-', linewidth=2, markersize=8, label='Numerical error') ax.loglog(dx_values, [dx**2 for dx in dx_values], 'r--', label='O(Δx²)') ax.set_xlabel('Grid spacing Δx', fontsize=12) ax.set_ylabel('Error', fontsize=12) ax.set_title('Convergence test', fontsize=14, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) return fig # Execution example analyzer = StabilityAnalyzer() fig = analyzer.plot_stability_regions() plt.show() analyzer.von_neumann_analysis(dt=0.001, dx=0.1)

4. Extension to Multidimensional Problems

Code Example 4: 2D Problems

import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D class Solver2D: """2D problem solver""" def __init__(self, Nx=50, Ny=50, Lx=1.0, Ly=1.0): self.Nx = Nx self.Ny = Ny self.Lx = Lx self.Ly = Ly self.x = np.linspace(0, Lx, Nx) self.y = np.linspace(0, Ly, Ny) self.X, self.Y = np.meshgrid(self.x, self.y) self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] self.u = np.zeros((Nx, Ny)) def initialize_gaussian(self, x0=0.5, y0=0.5, sigma=0.1): """Gaussian initial conditions""" self.u = np.exp(-((self.X - x0)**2 + (self.Y - y0)**2) / (2*sigma**2)) def laplacian_2d(self, u): """2D Laplacian""" laplacian = np.zeros_like(u) # Interior points laplacian[1:-1, 1:-1] = ( (u[2:, 1:-1] - 2*u[1:-1, 1:-1] + u[:-2, 1:-1]) / self.dx**2 + (u[1:-1, 2:] - 2*u[1:-1, 1:-1] + u[1:-1, :-2]) / self.dy**2 ) return laplacian def step(self, dt): """Time evolution (one step)""" lap = self.laplacian_2d(self.u) self.u += dt * lap def solve(self, T=0.1, dt=0.001): """Time evolution solver""" steps = int(T / dt) for n in range(steps): self.step(dt) if n % 10 == 0: print(f"Step {n}/{steps}") return self.u def plot_solution(self): """Solution visualization""" fig = plt.figure(figsize=(16, 5)) # 2DContour Plot ax1 = fig.add_subplot(131) im = ax1.contourf(self.X, self.Y, self.u, levels=20, cmap='viridis') ax1.set_xlabel('x', fontsize=12) ax1.set_ylabel('y', fontsize=12) ax1.set_title('Contour Plot', fontsize=12, fontweight='bold') plt.colorbar(im, ax=ax1) # 3D Surface ax2 = fig.add_subplot(132, projection='3d') surf = ax2.plot_surface(self.X, self.Y, self.u, cmap='plasma', alpha=0.8) ax2.set_xlabel('x') ax2.set_ylabel('y') ax2.set_zlabel('u(x,y)') ax2.set_title('3D Surface', fontsize=12, fontweight='bold') # Cross-section plot ax3 = fig.add_subplot(133) mid_y = self.Ny // 2 ax3.plot(self.x, self.u[:, mid_y], 'b-', linewidth=2, label='y=0.5 cross-section') ax3.set_xlabel('x', fontsize=12) ax3.set_ylabel('u(x, y=0.5)', fontsize=12) ax3.set_title('Cross-section profile', fontsize=12, fontweight='bold') ax3.legend() ax3.grid(True, alpha=0.3) plt.tight_layout() return fig # Execution example solver_2d = Solver2D(Nx=100, Ny=100) solver_2d.initialize_gaussian(x0=0.5, y0=0.5, sigma=0.1) solver_2d.solve(T=0.1, dt=0.0005) fig = solver_2d.plot_solution() plt.show()

5. Application Examples and Case Studies

Code Example 5: Materials Science Applications

import numpy as np import matplotlib.pyplot as plt class MaterialsApplication: """Materials science application simulation""" def __init__(self, N=200, L=10.0): self.N = N self.L = L self.x = np.linspace(0, L, N) self.dx = self.x[1] - self.x[0] # Physical properties self.diffusivity = 1.0 self.reaction_rate = 0.1 def reaction_diffusion(self, u, v): """Reaction-diffusion equation""" # Laplacian lap_u = np.zeros_like(u) lap_u[1:-1] = (u[2:] - 2*u[1:-1] + u[:-2]) / self.dx**2 lap_v = np.zeros_like(v) lap_v[1:-1] = (v[2:] - 2*v[1:-1] + v[:-2]) / self.dx**2 # Reaction term f = u * v**2 du_dt = self.diffusivity * lap_u - f dv_dt = 0.5 * self.diffusivity * lap_v + f return du_dt, dv_dt def simulate_process(self, T=50.0, dt=0.01): """Materials process simulation""" steps = int(T / dt) # Initial conditions u = np.ones(self.N) v = np.zeros(self.N) v[self.N//4:3*self.N//4] = 1.0 # Time evolution u_history = [u.copy()] v_history = [v.copy()] for n in range(steps): du, dv = self.reaction_diffusion(u, v) u += dt * du v += dt * dv # Boundary conditions u[0] = u[1] u[-1] = u[-2] v[0] = v[1] v[-1] = v[-2] if n % 100 == 0: u_history.append(u.copy()) v_history.append(v.copy()) return u_history, v_history def plot_process(self, u_history, v_history): """Process visualization""" fig, axes = plt.subplots(2, 3, figsize=(15, 8)) times = [0, len(u_history)//4, len(u_history)//2, 3*len(u_history)//4, len(u_history)-1] for idx, t_idx in enumerate(times[:3]): ax = axes[0, idx] ax.plot(self.x, u_history[t_idx], 'b-', linewidth=2, label='Component A') ax.plot(self.x, v_history[t_idx], 'r-', linewidth=2, label='Component B') ax.set_xlabel('Position x', fontsize=10) ax.set_ylabel('Concentration', fontsize=10) ax.set_title(f't = {t_idx*10:.1f}', fontsize=11, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) for idx, t_idx in enumerate(times[2:]): ax = axes[1, idx] ax.plot(self.x, u_history[t_idx], 'b-', linewidth=2, label='Component A') ax.plot(self.x, v_history[t_idx], 'r-', linewidth=2, label='Component B') ax.set_xlabel('Position x', fontsize=10) ax.set_ylabel('Concentration', fontsize=10) ax.set_title(f't = {t_idx*10:.1f}', fontsize=11, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) plt.tight_layout() return fig # Execution example app = MaterialsApplication(N=200, L=10.0) u_hist, v_hist = app.simulate_process(T=100.0, dt=0.01) fig = app.plot_process(u_hist, v_hist) plt.show() print("Materials process simulation completed")

6. Performance optimization and benchmarking

Code Example 6: Performance Optimization

import numpy as np import matplotlib.pyplot as plt import time from numba import jit class PerformanceOptimizer: """Performance optimization and benchmarking""" @staticmethod def naive_implementation(N, steps): """Unoptimized implementation""" x = np.linspace(0, 10, N) u = np.exp(-x**2) start_time = time.time() for _ in range(steps): u_new = u.copy() for i in range(1, N-1): u_new[i] = 0.25 * (u[i-1] + 2*u[i] + u[i+1]) u = u_new elapsed = time.time() - start_time return u, elapsed @staticmethod def vectorized_implementation(N, steps): """Vectorized implementation""" x = np.linspace(0, 10, N) u = np.exp(-x**2) start_time = time.time() for _ in range(steps): u[1:-1] = 0.25 * (u[:-2] + 2*u[1:-1] + u[2:]) elapsed = time.time() - start_time return u, elapsed @staticmethod @jit(nopython=True) def numba_kernel(u, N, steps): """Numba JIT optimization kernel""" for _ in range(steps): u_new = u.copy() for i in range(1, N-1): u_new[i] = 0.25 * (u[i-1] + 2*u[i] + u[i+1]) u = u_new return u @staticmethod def numba_implementation(N, steps): """Numba JIT implementation""" x = np.linspace(0, 10, N) u = np.exp(-x**2) start_time = time.time() u = PerformanceOptimizer.numba_kernel(u, N, steps) elapsed = time.time() - start_time return u, elapsed def benchmark(self): """Benchmark execution""" N_values = [100, 500, 1000, 2000] steps = 1000 results = { 'naive': [], 'vectorized': [], 'numba': [] } for N in N_values: print(f"N={N} benchmarking...") # Naive _, t_naive = self.naive_implementation(N, steps) results['naive'].append(t_naive) # Vectorized _, t_vec = self.vectorized_implementation(N, steps) results['vectorized'].append(t_vec) # Numba(Warmup) self.numba_implementation(10, 10) _, t_numba = self.numba_implementation(N, steps) results['numba'].append(t_numba) return N_values, results def plot_benchmark(self, N_values, results): """Benchmark results plot""" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5)) # Execution time ax1.plot(N_values, results['naive'], 'o-', linewidth=2, label='Naive', markersize=8) ax1.plot(N_values, results['vectorized'], 's-', linewidth=2, label='Vectorized', markersize=8) ax1.plot(N_values, results['numba'], '^-', linewidth=2, label='Numba JIT', markersize=8) ax1.set_xlabel('Grid points N', fontsize=12) ax1.set_ylabel('Execution time [s]', fontsize=12) ax1.set_title('Performance Comparison', fontsize=14, fontweight='bold') ax1.legend() ax1.grid(True, alpha=0.3) # Speedup speedup_vec = np.array(results['naive']) / np.array(results['vectorized']) speedup_numba = np.array(results['naive']) / np.array(results['numba']) ax2.bar(np.array(N_values) - 50, speedup_vec, width=80, alpha=0.7, label='Vectorized') ax2.bar(np.array(N_values) + 50, speedup_numba, width=80, alpha=0.7, label='Numba') ax2.set_xlabel('Grid points N', fontsize=12) ax2.set_ylabel('Speedup', fontsize=12) ax2.set_title('Speedup (compared to Naive)', fontsize=14, fontweight='bold') ax2.legend() ax2.grid(True, alpha=0.3, axis='y') plt.tight_layout() return fig # Execution example optimizer = PerformanceOptimizer() N_vals, bench_results = optimizer.benchmark() fig = optimizer.plot_benchmark(N_vals, bench_results) plt.show() print("\n=== Benchmark Results ===") for N, t_naive, t_vec, t_numba in zip(N_vals, bench_results['naive'], bench_results['vectorized'], bench_results['numba']): print(f"N={N}: Naive={t_naive:.4f}s, Vectorized={t_vec:.4f}s, " f"Numba={t_numba:.4f}s")

7. Comprehensive Exercise Project

Code Example 7: Comprehensive Project

import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation class ComprehensiveProject: """Comprehensive Exercise Project: Practical Application of Process Dynamics""" def __init__(self, Nx=150, Ny=150): self.Nx = Nx self.Ny = Ny self.x = np.linspace(0, 10, Nx) self.y = np.linspace(0, 10, Ny) self.X, self.Y = np.meshgrid(self.x, self.y) self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] # State variables self.field = np.zeros((Nx, Ny)) self.auxiliary = np.zeros((Nx, Ny)) def initialize_complex_condition(self): """Complex initial conditions""" # Superposition of multiple Gaussian distributions centers = [(2, 2), (5, 5), (8, 8), (2, 8), (8, 2)] for (cx, cy) in centers: self.field += np.exp(-((self.X - cx)**2 + (self.Y - cy)**2) / 0.3) # Addition of noise self.field += 0.1 * np.random.randn(self.Nx, self.Ny) def coupled_evolution(self, dt): """Coupled evolution equations""" # Laplacian calculation lap_field = np.zeros_like(self.field) lap_field[1:-1, 1:-1] = ( (self.field[2:, 1:-1] - 2*self.field[1:-1, 1:-1] + self.field[:-2, 1:-1]) / self.dx**2 + (self.field[1:-1, 2:] - 2*self.field[1:-1, 1:-1] + self.field[1:-1, :-2]) / self.dy**2 ) # Nonlinear term nonlinear_term = self.field**2 - self.field**3 # Time evolution self.field += dt * (lap_field + nonlinear_term) # Boundary conditions(Neumann) self.field[0, :] = self.field[1, :] self.field[-1, :] = self.field[-2, :] self.field[:, 0] = self.field[:, 1] self.field[:, -1] = self.field[:, -2] def compute_statistics(self): """Statistical calculation""" mean = np.mean(self.field) std = np.std(self.field) total_energy = np.sum(self.field**2) * self.dx * self.dy return { 'mean': mean, 'std': std, 'energy': total_energy, 'min': np.min(self.field), 'max': np.max(self.field) } def run_simulation(self, T=5.0, dt=0.01): """Simulation execution""" steps = int(T / dt) # Recording statistical information stats_history = [] for n in range(steps): self.coupled_evolution(dt) if n % 10 == 0: stats = self.compute_statistics() stats['time'] = n * dt stats_history.append(stats) print(f"Step {n}/{steps}: Energy={stats['energy']:.4f}") return stats_history def plot_final_results(self, stats_history): """Comprehensive plot of final results""" fig = plt.figure(figsize=(16, 12)) gs = fig.add_gridspec(3, 3, hspace=0.3, wspace=0.3) # Final field (contour) ax1 = fig.add_subplot(gs[0, :2]) im1 = ax1.contourf(self.X, self.Y, self.field, levels=30, cmap='RdBu_r') ax1.set_xlabel('x', fontsize=12) ax1.set_ylabel('y', fontsize=12) ax1.set_title('Final field distribution', fontsize=14, fontweight='bold') plt.colorbar(im1, ax=ax1) # 3D Surface ax2 = fig.add_subplot(gs[0, 2], projection='3d') surf = ax2.plot_surface(self.X[::3, ::3], self.Y[::3, ::3], self.field[::3, ::3], cmap='viridis') ax2.set_xlabel('x') ax2.set_ylabel('y') ax2.set_zlabel('field') ax2.set_title('3D visualization', fontsize=12, fontweight='bold') # Energy time evolution ax3 = fig.add_subplot(gs[1, 0]) times = [s['time'] for s in stats_history] energies = [s['energy'] for s in stats_history] ax3.plot(times, energies, 'b-', linewidth=2) ax3.set_xlabel('Time t', fontsize=12) ax3.set_ylabel('Total energy', fontsize=12) ax3.set_title('Energy conservation', fontsize=12, fontweight='bold') ax3.grid(True, alpha=0.3) # Time evolution of statistics ax4 = fig.add_subplot(gs[1, 1]) means = [s['mean'] for s in stats_history] stds = [s['std'] for s in stats_history] ax4.plot(times, means, 'r-', linewidth=2, label='Mean value') ax4.plot(times, stds, 'g-', linewidth=2, label='Standard deviation') ax4.set_xlabel('Time t', fontsize=12) ax4.set_ylabel('Statistics', fontsize=12) ax4.set_title('Statistical properties', fontsize=12, fontweight='bold') ax4.legend() ax4.grid(True, alpha=0.3) # Minimum and maximum values ax5 = fig.add_subplot(gs[1, 2]) mins = [s['min'] for s in stats_history] maxs = [s['max'] for s in stats_history] ax5.plot(times, mins, 'b-', linewidth=2, label='Minimum value') ax5.plot(times, maxs, 'r-', linewidth=2, label='Maximum value') ax5.set_xlabel('Time t', fontsize=12) ax5.set_ylabel('Value', fontsize=12) ax5.set_title('Minimum and maximum values', fontsize=12, fontweight='bold') ax5.legend() ax5.grid(True, alpha=0.3) # Histogram ax6 = fig.add_subplot(gs[2, 0]) ax6.hist(self.field.flatten(), bins=50, alpha=0.7, color='blue') ax6.set_xlabel('Field value', fontsize=12) ax6.set_ylabel('Frequency', fontsize=12) ax6.set_title('Value distribution', fontsize=12, fontweight='bold') ax6.grid(True, alpha=0.3, axis='y') # Cross-section profile ax7 = fig.add_subplot(gs[2, 1]) mid_y = self.Ny // 2 ax7.plot(self.x, self.field[:, mid_y], 'b-', linewidth=2) ax7.set_xlabel('x', fontsize=12) ax7.set_ylabel('field(x, y=5)', fontsize=12) ax7.set_title('Central cross-section', fontsize=12, fontweight='bold') ax7.grid(True, alpha=0.3) # Power spectrum ax8 = fig.add_subplot(gs[2, 2]) fft_field = np.fft.fft2(self.field) power_spectrum = np.abs(fft_field)**2 power_spectrum_1d = np.mean(power_spectrum, axis=0) freq = np.fft.fftfreq(self.Nx, self.dx) ax8.loglog(freq[1:self.Nx//2], power_spectrum_1d[1:self.Nx//2], 'b-') ax8.set_xlabel('Wavenumber', fontsize=12) ax8.set_ylabel('Power', fontsize=12) ax8.set_title('Power spectrum', fontsize=12, fontweight='bold') ax8.grid(True, alpha=0.3) return fig # Main execution project = ComprehensiveProject(Nx=150, Ny=150) project.initialize_complex_condition() print("Starting comprehensive simulation...") stats_history = project.run_simulation(T=5.0, dt=0.01) fig = project.plot_final_results(stats_history) plt.show() print("\n=== Simulation Completed ===") print(f"Final energy: {stats_history[-1]['energy']:.4f}") print(f"Final mean: {stats_history[-1]['mean']:.4f}") print(f"Final standard deviation: {stats_history[-1]['std']:.4f}")

Exercises

Exercise 1: Theoretical Understanding

Derive the fundamental equations of applications to process dynamics, and explain their physical meaning. Specifically, discuss the role of each term and the importance of boundary conditions.

Exercise 2: Algorithm Implementation

Improve the algorithms learned in this chapter to create more accurate and faster implementations. Quantitatively evaluate the stability conditions and computational errors.

Exercise 3: Application Project

Choose a specific problem in materials science or physics and apply the methods of process dynamics to simulate it. Analyze the results and provide physical interpretations.

Summary

  • Learned the theoretical foundations and mathematical formulation of applications to process dynamics
  • Mastered numerical algorithm implementation and stability analysis methods
  • Understood extension to multidimensional problems and implementation techniques
  • Practiced application examples in materials science and physics
  • Learned performance optimization and benchmarking methods
  • Completed a comprehensive simulation project

References

  1. Standard textbooks on fundamental theory of numerical computation
  2. Specialized books on computational physics and computational materials science
  3. Practical guide to scientific computing with Python
  4. Explanatory books on performance optimization and HPC technology

Disclaimer