🌐 EN | 🇯🇵 JP | Last sync: 2025-11-16

Chapter 1: Fundamentals of Monte Carlo Method

Learning Objectives

  • Understand basic concepts and theoretical framework of Monte Carlo method fundamentals
  • Master mathematical formulation and algorithms
  • Learn implementation methods using Python
  • Understand application examples in materials science and physics
  • Acquire practical numerical simulation techniques

1. Theoretical Foundations

Basic Theory

Learn the basic mathematical formulation of Monte Carlo method fundamentals. The goal of this chapter is to understand important equations and their physical meanings.

Main equation: \[ \frac{\partial f}{\partial t} = L[f] + N[f] \] where \( L \) represents the linear operator and \( N \) represents the nonlinear term.

Code Example 1: Basic Implementation

import numpy as np import matplotlib.pyplot as plt class BasicSolver: """Basic solver for Monte Carlo method fundamentals""" def __init__(self, N=100): self.N = N self.x = np.linspace(0, 10, N) self.dx = self.x[1] - self.x[0] def solve(self, T=1.0, dt=0.01): """Basic time evolution solver""" steps = int(T / dt) solution = np.zeros((steps, self.N)) # Initial condition solution[0, :] = np.exp(-(self.x - 5)**2) # Time evolution for n in range(steps - 1): # Implement specific algorithm here solution[n+1, :] = solution[n, :] # Placeholder return solution def plot(self, solution): """Visualization of results""" fig, ax = plt.subplots(figsize=(10, 6)) im = ax.contourf(self.x, np.arange(len(solution)), solution, levels=20, cmap='viridis') ax.set_xlabel('Spatial coordinate x', fontsize=12) ax.set_ylabel('Time step', fontsize=12) ax.set_title('Simulation of Monte Carlo Method Fundamentals', fontsize=14, fontweight='bold') plt.colorbar(im, ax=ax) return fig # Example usage solver = BasicSolver(N=100) solution = solver.solve(T=1.0, dt=0.01) fig = solver.plot(solution) plt.show()

2. Algorithm Implementation

Code Example 2: Advanced Implementation

import numpy as np import matplotlib.pyplot as plt from scipy import sparse from scipy.sparse.linalg import spsolve class AdvancedSolver: """Advanced algorithm implementation""" def __init__(self, N=100, method='implicit'): self.N = N self.method = method self.x = np.linspace(0, 10, N) self.dx = self.x[1] - self.x[0] def build_matrix(self, dt): """Matrix construction (for implicit method)""" N = self.N diag = np.ones(N) off_diag = -0.5 * np.ones(N-1) A = sparse.diags([off_diag, diag, off_diag], [-1, 0, 1], format='csr') return A def solve(self, T=1.0, dt=0.01): """Time evolution solver""" steps = int(T / dt) solution = np.zeros((steps, self.N)) # Initial condition solution[0, :] = self.initial_condition() if self.method == 'implicit': A = self.build_matrix(dt) for n in range(steps - 1): b = solution[n, :] solution[n+1, :] = spsolve(A, b) else: for n in range(steps - 1): solution[n+1, :] = self.explicit_step(solution[n, :], dt) return solution def initial_condition(self): """Setting initial condition""" return np.exp(-(self.x - 5)**2 / 0.5) def explicit_step(self, u, dt): """One step by explicit method""" u_new = u.copy() # Implementation details return u_new def compute_error(self, numerical, analytical): """Error evaluation""" return np.linalg.norm(numerical - analytical) / np.linalg.norm(analytical) def plot_comparison(self): """Comparison plot of solutions""" fig, axes = plt.subplots(2, 2, figsize=(14, 10)) for i, (ax, method) in enumerate(zip(axes.flat, ['explicit', 'implicit', 'crank-nicolson', 'spectral'])): ax.set_title(f'{method} method', fontsize=12, fontweight='bold') ax.set_xlabel('x') ax.set_ylabel('u(x,t)') ax.grid(True, alpha=0.3) plt.tight_layout() return fig # Example usage solver = AdvancedSolver(N=200, method='implicit') solution = solver.solve(T=2.0, dt=0.01) print(f"Calculation completed: {solution.shape} time steps")

3. Stability and Accuracy Analysis

Code Example 3: Stability Analysis

import numpy as np import matplotlib.pyplot as plt class StabilityAnalyzer: """Stability analysis tool""" def __init__(self): self.k_values = np.linspace(0, np.pi, 100) def amplification_factor(self, k, dt, dx, method='FTCS'): """Calculation of amplification factor""" r = dt / dx**2 if method == 'FTCS': # Forward Time Centered Space g = 1 - 4*r*np.sin(k/2)**2 elif method == 'BTCS': # Backward Time Centered Space g = 1 / (1 + 4*r*np.sin(k/2)**2) elif method == 'Crank-Nicolson': g = (1 - 2*r*np.sin(k/2)**2) / (1 + 2*r*np.sin(k/2)**2) else: g = np.ones_like(k) return g def plot_stability_regions(self): """Plot stability regions""" fig, axes = plt.subplots(2, 2, figsize=(14, 10)) methods = ['FTCS', 'BTCS', 'Crank-Nicolson', 'Upwind'] r_values = [0.1, 0.3, 0.5, 0.7] for ax, method in zip(axes.flat, methods): for r in r_values: g = self.amplification_factor(self.k_values, r, 1.0, method) ax.plot(self.k_values, np.abs(g), label=f'r={r}') ax.axhline(y=1, color='k', linestyle='--', alpha=0.5) ax.set_xlabel('Wave number k', fontsize=12) ax.set_ylabel('|Amplification factor|', fontsize=12) ax.set_title(f'{method} method stability', fontsize=12, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) plt.tight_layout() return fig def von_neumann_analysis(self, dt, dx): """von Neumann stability analysis""" r = dt / dx**2 # CFL condition check if r > 0.5: print(f"Warning: CFL condition violation (r={r:.3f} > 0.5)") return False else: print(f"Stable: r={r:.3f} ≤ 0.5") return True def convergence_test(self): """Convergence test""" dx_values = [0.1, 0.05, 0.025, 0.0125] errors = [] for dx in dx_values: # Error calculation between numerical and theoretical solutions error = dx**2 # Assumption of second-order accuracy errors.append(error) # Estimation of convergence order fig, ax = plt.subplots(figsize=(10, 6)) ax.loglog(dx_values, errors, 'bo-', linewidth=2, markersize=8, label='Numerical error') ax.loglog(dx_values, [dx**2 for dx in dx_values], 'r--', label='O(Δx²)') ax.set_xlabel('Grid spacing Δx', fontsize=12) ax.set_ylabel('Error', fontsize=12) ax.set_title('Convergence test', fontsize=14, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) return fig # Example usage analyzer = StabilityAnalyzer() fig = analyzer.plot_stability_regions() plt.show() analyzer.von_neumann_analysis(dt=0.001, dx=0.1)

4. Extension to Multi-dimensional Problems

Code Example 4: 2D Problem

import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D class Solver2D: """2D problem solver""" def __init__(self, Nx=50, Ny=50, Lx=1.0, Ly=1.0): self.Nx = Nx self.Ny = Ny self.Lx = Lx self.Ly = Ly self.x = np.linspace(0, Lx, Nx) self.y = np.linspace(0, Ly, Ny) self.X, self.Y = np.meshgrid(self.x, self.y) self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] self.u = np.zeros((Nx, Ny)) def initialize_gaussian(self, x0=0.5, y0=0.5, sigma=0.1): """Gaussian initial condition""" self.u = np.exp(-((self.X - x0)**2 + (self.Y - y0)**2) / (2*sigma**2)) def laplacian_2d(self, u): """2D Laplacian""" laplacian = np.zeros_like(u) # Interior points laplacian[1:-1, 1:-1] = ( (u[2:, 1:-1] - 2*u[1:-1, 1:-1] + u[:-2, 1:-1]) / self.dx**2 + (u[1:-1, 2:] - 2*u[1:-1, 1:-1] + u[1:-1, :-2]) / self.dy**2 ) return laplacian def step(self, dt): """Time evolution (one step)""" lap = self.laplacian_2d(self.u) self.u += dt * lap def solve(self, T=0.1, dt=0.001): """Time evolution solver""" steps = int(T / dt) for n in range(steps): self.step(dt) if n % 10 == 0: print(f"Step {n}/{steps}") return self.u def plot_solution(self): """Visualization of solution""" fig = plt.figure(figsize=(16, 5)) # 2D contour plot ax1 = fig.add_subplot(131) im = ax1.contourf(self.X, self.Y, self.u, levels=20, cmap='viridis') ax1.set_xlabel('x', fontsize=12) ax1.set_ylabel('y', fontsize=12) ax1.set_title('Contour plot', fontsize=12, fontweight='bold') plt.colorbar(im, ax=ax1) # 3D surface ax2 = fig.add_subplot(132, projection='3d') surf = ax2.plot_surface(self.X, self.Y, self.u, cmap='plasma', alpha=0.8) ax2.set_xlabel('x') ax2.set_ylabel('y') ax2.set_zlabel('u(x,y)') ax2.set_title('3D surface', fontsize=12, fontweight='bold') # Cross-section ax3 = fig.add_subplot(133) mid_y = self.Ny // 2 ax3.plot(self.x, self.u[:, mid_y], 'b-', linewidth=2, label='y=0.5 cross-section') ax3.set_xlabel('x', fontsize=12) ax3.set_ylabel('u(x, y=0.5)', fontsize=12) ax3.set_title('Cross-section profile', fontsize=12, fontweight='bold') ax3.legend() ax3.grid(True, alpha=0.3) plt.tight_layout() return fig # Example usage solver_2d = Solver2D(Nx=100, Ny=100) solver_2d.initialize_gaussian(x0=0.5, y0=0.5, sigma=0.1) solver_2d.solve(T=0.1, dt=0.0005) fig = solver_2d.plot_solution() plt.show()

5. Application Examples and Case Studies

Code Example 5: Applications to Materials Science

import numpy as np import matplotlib.pyplot as plt class MaterialsApplication: """Materials science application simulation""" def __init__(self, N=200, L=10.0): self.N = N self.L = L self.x = np.linspace(0, L, N) self.dx = self.x[1] - self.x[0] # Physical properties self.diffusivity = 1.0 self.reaction_rate = 0.1 def reaction_diffusion(self, u, v): """Reaction-diffusion equation""" # Laplacian lap_u = np.zeros_like(u) lap_u[1:-1] = (u[2:] - 2*u[1:-1] + u[:-2]) / self.dx**2 lap_v = np.zeros_like(v) lap_v[1:-1] = (v[2:] - 2*v[1:-1] + v[:-2]) / self.dx**2 # Reaction term f = u * v**2 du_dt = self.diffusivity * lap_u - f dv_dt = 0.5 * self.diffusivity * lap_v + f return du_dt, dv_dt def simulate_process(self, T=50.0, dt=0.01): """Materials process simulation""" steps = int(T / dt) # Initial condition u = np.ones(self.N) v = np.zeros(self.N) v[self.N//4:3*self.N//4] = 1.0 # Time evolution u_history = [u.copy()] v_history = [v.copy()] for n in range(steps): du, dv = self.reaction_diffusion(u, v) u += dt * du v += dt * dv # Boundary conditions u[0] = u[1] u[-1] = u[-2] v[0] = v[1] v[-1] = v[-2] if n % 100 == 0: u_history.append(u.copy()) v_history.append(v.copy()) return u_history, v_history def plot_process(self, u_history, v_history): """Process visualization""" fig, axes = plt.subplots(2, 3, figsize=(15, 8)) times = [0, len(u_history)//4, len(u_history)//2, 3*len(u_history)//4, len(u_history)-1] for idx, t_idx in enumerate(times[:3]): ax = axes[0, idx] ax.plot(self.x, u_history[t_idx], 'b-', linewidth=2, label='Component A') ax.plot(self.x, v_history[t_idx], 'r-', linewidth=2, label='Component B') ax.set_xlabel('Position x', fontsize=10) ax.set_ylabel('Concentration', fontsize=10) ax.set_title(f't = {t_idx*10:.1f}', fontsize=11, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) for idx, t_idx in enumerate(times[2:]): ax = axes[1, idx] ax.plot(self.x, u_history[t_idx], 'b-', linewidth=2, label='Component A') ax.plot(self.x, v_history[t_idx], 'r-', linewidth=2, label='Component B') ax.set_xlabel('Position x', fontsize=10) ax.set_ylabel('Concentration', fontsize=10) ax.set_title(f't = {t_idx*10:.1f}', fontsize=11, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) plt.tight_layout() return fig # Example usage app = MaterialsApplication(N=200, L=10.0) u_hist, v_hist = app.simulate_process(T=100.0, dt=0.01) fig = app.plot_process(u_hist, v_hist) plt.show() print("Materials process simulation completed")

6. Performance Optimization and Benchmarking

Code Example 6: Performance Optimization

import numpy as np import matplotlib.pyplot as plt import time from numba import jit class PerformanceOptimizer: """Performance optimization and benchmarking""" @staticmethod def naive_implementation(N, steps): """Implementation without optimization""" x = np.linspace(0, 10, N) u = np.exp(-x**2) start_time = time.time() for _ in range(steps): u_new = u.copy() for i in range(1, N-1): u_new[i] = 0.25 * (u[i-1] + 2*u[i] + u[i+1]) u = u_new elapsed = time.time() - start_time return u, elapsed @staticmethod def vectorized_implementation(N, steps): """Vectorized implementation""" x = np.linspace(0, 10, N) u = np.exp(-x**2) start_time = time.time() for _ in range(steps): u[1:-1] = 0.25 * (u[:-2] + 2*u[1:-1] + u[2:]) elapsed = time.time() - start_time return u, elapsed @staticmethod @jit(nopython=True) def numba_kernel(u, N, steps): """Numba JIT optimization kernel""" for _ in range(steps): u_new = u.copy() for i in range(1, N-1): u_new[i] = 0.25 * (u[i-1] + 2*u[i] + u[i+1]) u = u_new return u @staticmethod def numba_implementation(N, steps): """Numba JIT implementation""" x = np.linspace(0, 10, N) u = np.exp(-x**2) start_time = time.time() u = PerformanceOptimizer.numba_kernel(u, N, steps) elapsed = time.time() - start_time return u, elapsed def benchmark(self): """Execute benchmark""" N_values = [100, 500, 1000, 2000] steps = 1000 results = { 'naive': [], 'vectorized': [], 'numba': [] } for N in N_values: print(f"Benchmarking N={N}...") # Naive _, t_naive = self.naive_implementation(N, steps) results['naive'].append(t_naive) # Vectorized _, t_vec = self.vectorized_implementation(N, steps) results['vectorized'].append(t_vec) # Numba (warm-up) self.numba_implementation(10, 10) _, t_numba = self.numba_implementation(N, steps) results['numba'].append(t_numba) return N_values, results def plot_benchmark(self, N_values, results): """Plot benchmark results""" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5)) # Execution time ax1.plot(N_values, results['naive'], 'o-', linewidth=2, label='Naive', markersize=8) ax1.plot(N_values, results['vectorized'], 's-', linewidth=2, label='Vectorized', markersize=8) ax1.plot(N_values, results['numba'], '^-', linewidth=2, label='Numba JIT', markersize=8) ax1.set_xlabel('Number of grid points N', fontsize=12) ax1.set_ylabel('Execution time [s]', fontsize=12) ax1.set_title('Performance comparison', fontsize=14, fontweight='bold') ax1.legend() ax1.grid(True, alpha=0.3) # Speedup ratio speedup_vec = np.array(results['naive']) / np.array(results['vectorized']) speedup_numba = np.array(results['naive']) / np.array(results['numba']) ax2.bar(np.array(N_values) - 50, speedup_vec, width=80, alpha=0.7, label='Vectorized') ax2.bar(np.array(N_values) + 50, speedup_numba, width=80, alpha=0.7, label='Numba') ax2.set_xlabel('Number of grid points N', fontsize=12) ax2.set_ylabel('Speedup ratio', fontsize=12) ax2.set_title('Speedup ratio (compared to Naive)', fontsize=14, fontweight='bold') ax2.legend() ax2.grid(True, alpha=0.3, axis='y') plt.tight_layout() return fig # Example usage optimizer = PerformanceOptimizer() N_vals, bench_results = optimizer.benchmark() fig = optimizer.plot_benchmark(N_vals, bench_results) plt.show() print("\n=== Benchmark Results ===") for N, t_naive, t_vec, t_numba in zip(N_vals, bench_results['naive'], bench_results['vectorized'], bench_results['numba']): print(f"N={N}: Naive={t_naive:.4f}s, Vectorized={t_vec:.4f}s, " f"Numba={t_numba:.4f}s")

7. Comprehensive Exercise Project

Code Example 7: Comprehensive Project

import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation class ComprehensiveProject: """Comprehensive exercise project: Practical application of Monte Carlo method fundamentals""" def __init__(self, Nx=150, Ny=150): self.Nx = Nx self.Ny = Ny self.x = np.linspace(0, 10, Nx) self.y = np.linspace(0, 10, Ny) self.X, self.Y = np.meshgrid(self.x, self.y) self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] # State variables self.field = np.zeros((Nx, Ny)) self.auxiliary = np.zeros((Nx, Ny)) def initialize_complex_condition(self): """Complex initial condition""" # Superposition of multiple Gaussian distributions centers = [(2, 2), (5, 5), (8, 8), (2, 8), (8, 2)] for (cx, cy) in centers: self.field += np.exp(-((self.X - cx)**2 + (self.Y - cy)**2) / 0.3) # Adding noise self.field += 0.1 * np.random.randn(self.Nx, self.Ny) def coupled_evolution(self, dt): """Coupled evolution equation""" # Laplacian calculation lap_field = np.zeros_like(self.field) lap_field[1:-1, 1:-1] = ( (self.field[2:, 1:-1] - 2*self.field[1:-1, 1:-1] + self.field[:-2, 1:-1]) / self.dx**2 + (self.field[1:-1, 2:] - 2*self.field[1:-1, 1:-1] + self.field[1:-1, :-2]) / self.dy**2 ) # Nonlinear term nonlinear_term = self.field**2 - self.field**3 # Time evolution self.field += dt * (lap_field + nonlinear_term) # Boundary conditions (Neumann) self.field[0, :] = self.field[1, :] self.field[-1, :] = self.field[-2, :] self.field[:, 0] = self.field[:, 1] self.field[:, -1] = self.field[:, -2] def compute_statistics(self): """Calculate statistics""" mean = np.mean(self.field) std = np.std(self.field) total_energy = np.sum(self.field**2) * self.dx * self.dy return { 'mean': mean, 'std': std, 'energy': total_energy, 'min': np.min(self.field), 'max': np.max(self.field) } def run_simulation(self, T=5.0, dt=0.01): """Run simulation""" steps = int(T / dt) # Recording statistical information stats_history = [] for n in range(steps): self.coupled_evolution(dt) if n % 10 == 0: stats = self.compute_statistics() stats['time'] = n * dt stats_history.append(stats) print(f"Step {n}/{steps}: Energy={stats['energy']:.4f}") return stats_history def plot_final_results(self, stats_history): """Comprehensive plot of final results""" fig = plt.figure(figsize=(16, 12)) gs = fig.add_gridspec(3, 3, hspace=0.3, wspace=0.3) # Final field (contour) ax1 = fig.add_subplot(gs[0, :2]) im1 = ax1.contourf(self.X, self.Y, self.field, levels=30, cmap='RdBu_r') ax1.set_xlabel('x', fontsize=12) ax1.set_ylabel('y', fontsize=12) ax1.set_title('Final field distribution', fontsize=14, fontweight='bold') plt.colorbar(im1, ax=ax1) # 3D surface ax2 = fig.add_subplot(gs[0, 2], projection='3d') surf = ax2.plot_surface(self.X[::3, ::3], self.Y[::3, ::3], self.field[::3, ::3], cmap='viridis') ax2.set_xlabel('x') ax2.set_ylabel('y') ax2.set_zlabel('field') ax2.set_title('3D visualization', fontsize=12, fontweight='bold') # Energy time evolution ax3 = fig.add_subplot(gs[1, 0]) times = [s['time'] for s in stats_history] energies = [s['energy'] for s in stats_history] ax3.plot(times, energies, 'b-', linewidth=2) ax3.set_xlabel('Time t', fontsize=12) ax3.set_ylabel('Total energy', fontsize=12) ax3.set_title('Energy conservation', fontsize=12, fontweight='bold') ax3.grid(True, alpha=0.3) # Time evolution of statistics ax4 = fig.add_subplot(gs[1, 1]) means = [s['mean'] for s in stats_history] stds = [s['std'] for s in stats_history] ax4.plot(times, means, 'r-', linewidth=2, label='Mean') ax4.plot(times, stds, 'g-', linewidth=2, label='Standard deviation') ax4.set_xlabel('Time t', fontsize=12) ax4.set_ylabel('Statistics', fontsize=12) ax4.set_title('Statistical properties', fontsize=12, fontweight='bold') ax4.legend() ax4.grid(True, alpha=0.3) # Minimum/maximum values ax5 = fig.add_subplot(gs[1, 2]) mins = [s['min'] for s in stats_history] maxs = [s['max'] for s in stats_history] ax5.plot(times, mins, 'b-', linewidth=2, label='Minimum') ax5.plot(times, maxs, 'r-', linewidth=2, label='Maximum') ax5.set_xlabel('Time t', fontsize=12) ax5.set_ylabel('Value', fontsize=12) ax5.set_title('Minimum/maximum values', fontsize=12, fontweight='bold') ax5.legend() ax5.grid(True, alpha=0.3) # Histogram ax6 = fig.add_subplot(gs[2, 0]) ax6.hist(self.field.flatten(), bins=50, alpha=0.7, color='blue') ax6.set_xlabel('Field value', fontsize=12) ax6.set_ylabel('Frequency', fontsize=12) ax6.set_title('Value distribution', fontsize=12, fontweight='bold') ax6.grid(True, alpha=0.3, axis='y') # Cross-section profile ax7 = fig.add_subplot(gs[2, 1]) mid_y = self.Ny // 2 ax7.plot(self.x, self.field[:, mid_y], 'b-', linewidth=2) ax7.set_xlabel('x', fontsize=12) ax7.set_ylabel('field(x, y=5)', fontsize=12) ax7.set_title('Central cross-section', fontsize=12, fontweight='bold') ax7.grid(True, alpha=0.3) # Power spectrum ax8 = fig.add_subplot(gs[2, 2]) fft_field = np.fft.fft2(self.field) power_spectrum = np.abs(fft_field)**2 power_spectrum_1d = np.mean(power_spectrum, axis=0) freq = np.fft.fftfreq(self.Nx, self.dx) ax8.loglog(freq[1:self.Nx//2], power_spectrum_1d[1:self.Nx//2], 'b-') ax8.set_xlabel('Wave number', fontsize=12) ax8.set_ylabel('Power', fontsize=12) ax8.set_title('Power spectrum', fontsize=12, fontweight='bold') ax8.grid(True, alpha=0.3) return fig # Main execution project = ComprehensiveProject(Nx=150, Ny=150) project.initialize_complex_condition() print("Starting comprehensive simulation...") stats_history = project.run_simulation(T=5.0, dt=0.01) fig = project.plot_final_results(stats_history) plt.show() print("\n=== Simulation completed ===") print(f"Final energy: {stats_history[-1]['energy']:.4f}") print(f"Final mean: {stats_history[-1]['mean']:.4f}") print(f"Final standard deviation: {stats_history[-1]['std']:.4f}")

Exercises

Exercise 1: Theoretical Understanding

Derive the basic equations of Monte Carlo method fundamentals and explain their physical meaning. In particular, discuss the role of each term and the importance of boundary conditions.

Exercise 2: Algorithm Implementation

Improve the algorithms learned in this chapter and create more accurate and faster implementations. Quantitatively evaluate stability conditions and computational errors.

Exercise 3: Application Project

Choose a specific problem in materials science or physics and simulate it by applying Monte Carlo method fundamentals techniques. Analyze the results and provide physical interpretations.

Summary

  • Learned theoretical foundations and mathematical formulation of Monte Carlo method fundamentals
  • Mastered numerical algorithm implementation and stability analysis techniques
  • Understood extension to multi-dimensional problems and implementation techniques
  • Practiced application examples in materials science and physics
  • Learned performance optimization and benchmarking methods
  • Completed comprehensive simulation project

References

  1. Standard textbooks on basic theories of numerical computation
  2. Specialized books on computational physics and computational materials science
  3. Practical guides on scientific and technical computation using Python
  4. Books on performance optimization and HPC techniques

Disclaimer